)C-TR-89-48
| Technical Report
1989

)~-A208 809

ZSOURCE CONTENTION
ANAGEMENT IN PARALLEL SYSTEMS

lversity of Massachusetts

nsored by
tegic Defense initiative Office

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

) views and conclusions contained In this document are those of the authors and should not be
the official policies, either expressed or implied, of the Strategic

mln:l:unom«mus Government.
ELECTE
. JUN091989

ROME AIR DEVELOPMENT CENTER
Air Force Systems Command
Griffiss Alr Force Bese, NY 13441-5700

89 6 09 075

-

This report has been reviewed by the RADC Public Affairs Division (PA)

- and is releasable to the National Technical Information Service (NTIS). At
- NTIS 1t will be releasable to the general public, including foreign nations.

x
Vs

" RADC~TR-89-48 has been reviewed and is approved for publication,

! = / //
APPROVED: .°// ;:;7 ?/ ‘ /({
Ha o ffl L
ALAN N, WILLIAMS, 1LT, USAF
Project Engineer

APPROVED: 1g;7 ' ;;?CQ%§£§§§-——»-

RAYMOND P, URTZ, JR.
Technical Director
Directorate of Command and Control

— FOR THE COMMANDER: E?L‘;'"'(:)'

JOHN A. RITZ
Directorate of Plans & Programs

If your address has changed or if you wish to be removed from the RADC
mailing list, or if the addressee is no longer employed by your organization,
please notify RADC (COTC) Griffiss AFB NY 13441-5700. This will assist us
in maintaining a current mailing list.

Do not return copies of this report unless contractual obligations or notices
on a specific document require that it be returned.

RESQURCE CONTENTION MANAGEMENT IN PARALLEL SYSTEMS

Christos G. Cassandras
James F. Kurose
Don Towsley

Contractor; University of Massachusetts

Contract Number: F30602-81-C-0169

Effective Date of Contract: 10 Junc 1987

Contract Expiration Date: 31 December 1987

Short Title of Work: Resource Contention Management in
Parallel Systems

Period of Work Covered: Jun 87 =~ Dec 87

Principal Investigator: Christos G. Cassandras
Phone: (413) 545-1340

RADC Project Engineer: Alan N. Williams, 1Lt, USAF
Phone: (31%5) 330-2925

Approved for public release; distribution unlimited.

This research was supported by the Strategic Defense
Initiative Office of the Department of Defense and
was monitored by 1Lt Alan N. Williams, RADC (COTC),
Griffiss AFB NY 13441-5700 under Contract
F30602-81-C-0169.

UNCLASSIFIED

— Form A ed
Orm Approvi
REPORT DOCUMENTATION PAGE OMB No. 0704-0188
1a. REPORT SECURITY CLASSIFICATION b, RESTRICTIVE MARKINGS
UNCLASSIFIED N/A
2a, SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION/AVAILABILITY OF REPORT
N/A Approved for public release; distribution
¥ 2b. DECLASSIFICATION / DOWNGRADING SCHEDULE unlimited.
4. PERFORMING ORGANIZATION REPORT NUMBER(S) 5. MONITORING ORGANIZATION REPORT NUMBER(S)
N/A RADC-TR-89-48

‘ 6a. NAME OF PERFORMING ORGANIZATION 6b. O';FICE ‘s;m.soL 7a. NAME OF MONITORING ORGANIZATION
University of Massachusetts (#f appl) Rome Air Development Center (COTC)

——

s —— —
6c. ADDRESS (City, State, and ZIP Code) 7b. ADDRESS (City, State, and ZIP Code)

Department of Electrical & Computer Engineerin? Griffiss AFB NY 13441-5700
Amherst MA 01003

82 NAME OF FUNDING / SPONSORING 8b. OFFICE SYMBOL | 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION , (If applicable)
Rome Air Development Center COTC F30602-81-~C-0169
h
8c ADORESS (City, State, and ZIP Code) 10. SOURCE OF FUNDING NUMBERS
PROGRAM PROJECT TASK WORK UNIT
Griffigs AFB NY 13441-5700 ELEMENT NO. I NO NO JACCESSION NO.

63223C B&413 03 P3

L_”-__ TITLE (Include Security Classification)
RESOURCE CONTENTION MANAGEMENRT IN PARALLEL SYSTEMS

12. PERSONAL AUTHOR(S)
Christos G. Cassandras, James ¥. Kurose, Don Tousley

13a. TYPE OF REPORT 13b. TIME COVERED 14. DATE OF REPORT (Year, Month, Day)]1S. PAGE COUNT
Final rROM __Jun 87 10 Dec 87 April 1989 156
16. SUPPLEMENTARY NOTATION
N/A
17. COSATI CODES 18. SUBJECT TERMS (Continue on reverss if necessary and identify by block number)
FIELD GROUP SUB-GROUP Resource Contention ~ Parallel Processing)
09 02 Load Balancing Multiprocessing - . -
Scheduling /) e

%

19. ABSTRACT (Continue on reverse if necessary and Adtmiﬁ by biock number)
This research effort explored two {ssues: (1) The comparative study of simple load
balancing algorithms for distributed real-time systems which showed that simple policies
perform just as well as complex policies in a majority of the cases; (2) The second task
was the development of on-line optimization procedures for load balancing algorithms and
of task scheduling policies with real-time constraints. -

[0 S
)

20. DISTRIBUTION / AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION
UNCLASSIFEDAUNUMITED [SAME AS RPT. [oTic users | UNCLASSIFIED
22a. NAME OF RESPONSIBLE INDIVIDUAL 23D, TELEPHONE (Include Ares Code) | 22¢. OFFICE SYMBOL
Alan N, Williams, 1Lt, USAF (315) 330-2925 RADC _(COTC) ‘
DD Form 1473, JUN 86 Previous editions are obsolete. SECURITY CLASSIFICATION OF THIS PAGE
UNCLASSIFIED

Table of Contents

INTRODUCTION. ccuieieoteotesesecesssssasssscasessacsssssossesasssccnes 3
LOAD SHARING IN SOFT REAL-TIME DISTRIBUTED
SYSTEMS. ciiiiiiinreiecteterenestessiascansencancscnes Ceesesesensiesanne 3
2.1. System Models and Piotocols. c..covvviiiiiiiiiiiiieniecncnnnnns 4
2.2. Overview of Comparative Study Results.ccccoviiineneninnns 6
ADAPTIVE LOAD SHARING ALGORITHMS IN REAL-TIME
DISTRIBUTED PROCESSING SYSTEMS......cciitieietierenananens 9
3.1. A Static Decentralized Adaptive Load Sharing Algorithm....... 10
3.1.1. Distributed Algorithm Description.ccoceveuenens 13
3.1.2. Marginal Loss Estimation.......c.cooieiiiiiiiecnnnanns 14
3.2. Simulation Results..ccciieiieeiuirirriinciininsiiinicciencecionnnes 17
3.3.. Extension to Dynamic Load Sharing.........ccieieieieininennns 29
3.4. Sensitivity Analysis for Distributed Processing Systems
with Discrete Parameters......ccecveeeiierencteccesocsnccascncnns 30
3.4.1. Dynamic Processor Scheduling........ccocvvvvsivnennes 30
DESIGN AND ANALYSIS OF PARALLEL PROCESSING
SY S TEMS . iiiiiiiiitietiereateeetastrecessesscasesscrosnssssasassssasas 31
4.1. Multiprocessor Scheduling....cccciieieeiierenieccnrcocencennens 32
4.2. Models of Parallel Systems.........c..ccivivivacenes Cescececcane 33
CONCLUSIONS. 1 iiittitteitetececsasassssssssosssssasssssssssasssssone 36
REFERENCES . ..cuciiiteteetteesecresccscasescscssosassssssssssnsssssse 37

APPENDIX A Load Sharing in Soft Real-Time Distributed
Computer Systems

APPENDIX B Augmented Chain Analysis of Markov and
Semi-Markov Processes

APPENDIX C A Comparison of the Processor Sharing and vd
First Come First Serve Policies for Scheduling
Fork-Join Jobs in Multiprocessors

APPENDIX D Acyclic Fork-Join Queueing Networks ion/,-w
A_/&.U.lhhllity Codes
1/2 e [Avail and/or |
‘Dist [Special

p!

1. INTRODUCTION.

This report overviews the results of our research over the duration of the project; detailed
discussions of most results are included in the technical papers appearing as Appendices A-D. As
originally proposed, resource contention problems were decomposed into system-level and node-
level. At the system level, we have performed two main tasks: first, a comparative study of simple
load-sharing schemes in distributed real-time systems, and second, development of actual
algorithms to be implemented in practical systems. This work is reported in sections 2 and 3
respectively. At the node level, our objective has been to consider scheduling policies under real-
time constraints. During the course of our work, it became apparent that nodes are often
multiprocessors, where parallelism in task executicn is possible. Thus, we have also focused on
this issue, and obtained the results reported in section 4. Overall, our work has resolved many of
the problems identified in the original proposal, as well as generated new ones. In some cases,
there are useful extensions of our results which can oe obtained in the future, given the framework
created in this project.

Appendices A-D included in this report are technical papers which have already appeared or

have been submitted to journals or to conference proceedings.

2. LOAD SHARING IN SOFT REAL-TIME DISTRIBUTED SYSTEMS.

A major focus of our research during the past contract year has been on high-level load sharing
(LS) schemes for a class of distributed applications which are subject to soft real-time constraints.
In such real-time systems, jobs generated at a node in the distributed system must complete
execution within a specified amount of time after their initial arrival to the system; otherwise they
are considered lost. Examples of systems exhibiting such soft real-time behavior include the
general class of applications in which a process may spawn a number of subprocesses and then,
after a fixed amount of time, must make a decision based on the results of the subprocesses which

were able to execute (e.g., a distributed sensor system, in which multiple hypotheses are to be

3

—__-—_

generated and evaluated). A second application is in distributed industrial process control, where a
failure to complete a computation within a specified time constraint (due to a momentary overload
of work at a given node) may require the initiation of an expensive recovery procedure.

In these soft real-time systems, the primary performance metric is the maximization of the
percentage of jobs completed within their specified time constraint. Our research on real-time LS
algorithms has been based on the premise that simple real-time LS policies may perform as well as

their more complex counterparis. It has been previously noted that for non-real-time systems,

relatively simple decentralized policies may often provide effective load sharing in a distributed
system [1]. These works have motivated our work during the past year, which establishes
complementary results for the case of real-time systems, systems having performance requirements
and evaluation metrics which differ significantly from those of non-real-time systems. We stress
that, as in [1], the goal of the research reported in this section has not just been to propose any
specific real-time load sharing algorithm nor to necessarily develop performance models for
predicting the absolute performance of specific LS approaches, but rather to address the more
fundamental question of the level of complexity required to implement effective load sharing, in

this case in a distributed real-rime environment.

2.1. System Models and Protocols

Our model of a distributed system consists of N nodes which are interconnected through a
communication network; the network is assumed to be logically fully connected in that every node
can communicate with every other node. A stream of jobs is submitted locally to node i. We
assume that the nodes are heterogeneous in the sense that each node may have a different arrival
rate of externally submitted jobs, but homogeneous in the sense that a job submitted at any node in
the network can be processed at any other node in the network; this latter assumption can be easily
relaxed.

We are interested in studying LS policies in a soft real time systein, in which a job is lost it it

4

can not complete or begin execution (as the case may be) within a given time constraint.If the
deadline cannot be met locally, a LS algorithm may be invoked to transfer the job to another node
which can possibly meet the job's demands. We assume that a job cannot be transferred more than
once in order to avoid the problem of "trashing" and assume that a constant delay, d, (representing
communication and transfer processing delays) is required to transfer a job from one node to
another. Thus, if a job first arrives at node i with an initial time constraint of K1 and is transferred
to another node j for processing, its new time constraint at node j will be equal to (K1-d).
Our research has examined two simple approaches:

1. quasi-dynamic load sharing QDLS

2. probing
which have been previously studied for non-real-time systems, and compares their real-time
performance with that of the bounding cases of no load sharing and the theoretically optimum real-
time LS algorithm.

A LS approach can be characterized by its transfer policy, and its
location policy. The transfer policy determines a job should be trans-
ferred for remote execution. The location policy, determines where
(i.e., at which remote node) a transferred job will be executed.

Both QDLS and probing have the same simple transfer policy:

Transfer policy (QDLS and probing):
A job is transferred from node i to a remote node if and only if the unfinished workload of the
jobs currently at node i exceeds the time constraint for the job. A job will thus either queue for
service at the node at which it initially arrives (in which case it will be guaranteed execution) or
will be transferred to some remote node. We note that the transfer policy decision is made
dynamically, based on the current state of the node. There are no previous analytic studies
which have considered this transfer policy in a real-time environment.

The location policies of QDLS and probing are:

Location policy (QDLS):

If a job is to be transferred, a remote “target” node (to which the job is sent) is chosen
probabilistically and independent of the current state of the remote nodes. Note that QDLS
requires no non-local, dynamic state information. Although this location policy has been
extensively studied for the non-real-time case, no previous analytic work has addressed this
problem in a real-time environment.
Location policy (probing):

When a job is to be transferred a node probes some specified number of other system nodes
(chosen at random) to determine if one of them can currently guarantee execution of this job,
i.e., has an amount of unfinished work less than the time constraint of the job minus the
transfer delay. A node may probe up to some maximum number, L, (the probe limit) of other
nodes. If none of the probed nodes can execute the job, the job is lost. We note that probing
may be considered a simplified form of bidding [2]. The probing policy studied here was first
analytically examined in [1] (for non-real-time systems) and we follow their methodology

when studying the system-level model (but not the node-level model) of probing.

2.2. Overview of Comparative Study Results.

In the course of our research, analytic performance models were developed to study the
performance of the QDLS and LS approaches, as well as the case of no load sharing. The case of
the theoretically optimum LS algorithm was examined through simulation. The details of the
analysis are presented in Appendix A of this report.

Figure 1, which is discussed in additional detail in (3] (also Appendix A) shows representative
performance results for the QDLS and probing real-time load sharing schemes and compares their
performance with that of the ideal case of perfect-information load sharing and the case of no load
sharing (NLS). In this case, jobs were required to begin execution within the specified time
constraint or were otherwise lost. The performance results for the case in which jobs must

complete execution within the time constraint showed similar behavior and are .isu discussed in

6

detail in [3].

The results are for a 20 node system in which the average job execution time was 1 job/second
{exponentially distributed) and a network job transfer delay of d = 0.2 secs. The "ideal” case was
modeled as an M/M/20 queueing system with a time constraint of K1. We note that in the M/M/20
system, jobs are scheduled to available processors using complete information about the systen
state and incur no transfer delay. Thus, the "ideal" performance bounds shown in the subsequent
results are, in reality, unattainable. We also note that simulations were performed to validate our
analysis. The simulations were performed without many of the assumptions required by the
analysis; we note that the close correspondence between our simulation and analytic results indicate

that reasonable modeling assumptions and approximations were made in the development of our

analytic model of probing.
time constraint = 5
network delay = 0.1
0.6 + + At + + —
L
7 O.ST
r
E -+
c 0.47
t -
i no load sharin . X
o 0.3t 8 + unachievable theoretical
-]
best pciformance
L o2t 1
-]
s
t +
0.1+
s ol -~

%0 o0z o4 06 08 1.0 \2\14 1.8
. . Load . .
a simple approach using Average Los achievable performance region
increasing amounts of for any more complex approach
inforination

Figure 1: Performance of the Probing Policy for L, =1,3,5 under a symmetric load

‘_'-——

-

The real-time performance of the QDLS and probing approaches is demonstrated in Fig. 1 for
probe limits, L, = 1, 3, 5; the case of L;=1 corresponds to the QDLS policy. As expected the
performance of probing approaches the ideal limit as L, increases. Note, however, that a relatively
small probing limit (L,=5 when K1=0.5 (an extremely‘tight time constraint) and L,=3 when
K1=5.0), results in a real time performance extremely close to the unachievable upper bound. Also
note that increasing the probing limit beyond a relatively small number can result at best in only a
marginal performance improvement. We may conclude then that since additional probing beyond
some small probe limit incurs additional overhead, a relatively small probe limir would be sufficient
in practice to implement effective real time load sharing.

Perhaps more importantly, Fig. 1 provides a quantitative basis for addressing the question of
determining the appropriate level of complexity for LS algorithms. We note that a more complex
approach can at best achieve a performance level falling in the gap between our probing results and
the theoretical optimum. For system parameters of practical interest (i.e., a system loading less
than the physical capacity of the system and time constraints on the order of the service time of a
job), this gap can been seen to be quite small. If the overhead we have not modeled is to be
considered, the small performance difference between probing and a more complex approach,
which requires additional communication and computational overhead, can only becorne smaller.

The most important conclusion then to be drawn from Fig. 1 and our additional results
ciscussed in Appendix A is that for a relatively wide range of system parameters, the simple
approaches studied perform significantly better than the case of no load sharing and often perform
remarkably close to that of the theoretically optimum algorithm. Our conclusion thus complements
previously-established results for LS in non-real-time systems [1]: very simple approaches, which
use only a minimal amount of state information and have an extremely simple decisior-making
process (and hence are simple to implement) are often sufficient to provide effective load sharing in
a distributed real-time computer system. A corollary then is that for all but the tightest of time

constraints (e.g., values of the time constraint, K1, less than the average job service time), a more

sophisticated approach towards real-time load sharing can often result in only a small marginal

performance improvement over the extremely simple load sharing algorithms.

3. ADAPTIVE LOAD SHARING ALGORITHMS IN REAL-TIME DISTRIBUTED
PROCESSING SYSTEMS.

As in the previous section, our concern here is with distributed processing systems where jobs are
constrained by real-time deadlines. Thus, the performance objective is to minimize the fraction of
jobs that are lost due to exceeding their deadline. Our interest now, however, is in actually
developing adaptive algorithms, which can be incorporated into the system itself, and perform load
sharing on-line. First, let us identify three desired features for the practical applicability of such
algorithms:

1. Load sharing schemes should be sufficiently simple so as to incur little overhead and
communication costs.

2. Stochastic modeling assumptions regarding the nature of job arrival and service processes
should be minimized or eliminated.

3. The algorithms should require little or no information about the parameters of the
distributed processing systems (since these parameters may be hard to estimate in practice,
as well as subject to changes).

As we shall describe below, the algorithms we have developed and investigated have been
designed so as to satisfy these requirements.

Note that load sharing algorithms can be categorized in terms of their execution mode
(centralized or decentralized), and information structure (static or dynamic). A static decentralized
algorithm satisfies the simplicity requirement, since it can be executed at each node separately and
with no instantaneous state information. One, however, should expect dynamic algorithms to
perform better; hence, it is important to study the tradeoff between simplicity (no state information)
and performance.

To address the second and third requirement above, our goal has been to exploit developments

9

in sample-path-based sensitivity analysis techniques within the context of our problem (e.g. [4]-
{6]). In particular, we have used the Perturbation Analysis (PA) methodology, and have sought to
obtain extensions and generalizations that are applicable.

In section 3.1 below, we present a static decentralized algorithm we have developed to solve
the load sharing problem with real-time constraints. The approach is similar to the one used in
problems with no real-time constraints (e.g. [7]). In section 3.1.1 we outline the algorithm, and in
section 3.1.2, we describe the PA estimation procedure required in implementing this algorithm. In
section 3.2 we include simulation results illustrating the performance of our algorithm. In section
3.3, we discuss extensions of the algorithm, including a dynamic version making use of state
information. To actually develop such an algorithm, however, we have to derive extensions of our
estimation procedures to accomodate discrete (integer-valued) parameters. We outline in section

3.4 the work we have done along those lines.

3.1. A Static Decentralized Adaptive Load Sharing Algorithm.

As in section 2.1, a distributed processing system with N processors is modeled as a network,
with each node representing a processor. The flow of jobs arriving at node i is denoted by A,
i=1,...,N. The key idea of load sharing is to provide a control mechanism at each node i, so as to
allocate the flow A, over all nodes. Thus, when a job is received at node i, two decisions are made:

1. Transfer decision: to keep the job at i or send it to some other node.

2. Location decision: to determine the node j#i where the job should be sent (if the transfer

decision is not to keep the job at i).

For simplicity, we assume that every node can communicate with every other node (however,
this assumption can be easily relaxed). We will also initially assume that the communication delay
in transfering a job is negligible (this assumption can be relaxed in the future).

Figure 2 shows the model of node i we will use. The responsibility of the “control” function is

to split the flow A; into flows x; x;;20. Thus, jobs actually queued at node i for processing may

j9

10

originate at any one of the locations indexed by i=1,...,N. In our model, there is a deadline T,
associated with the kth job for all k=1,2,... If wy represents the waiting time of the kh job, then
the job is considered "lost" if wy > 1y, i.e. it is rejected from the system and is not processed. The

flow of lost jobs at node i is denoted by L;, and will be referred to as the loss rate at i (in jobs/sec).

from j=1,...,N ¢ Xji

L

sl o

}\,i .
—»| CONTROL | %ii L
i lost
- jobs
Xij s to j=1,...,N

—

Figure 2: Node i Model
The objective of the load sharing algorithm is to determine the flows x;; for all i,j = 1,...,N, so
as to minimize the fraction of lost jobs in the overall system (i.e. the probability that a job violates
its real-time constraint). Let Py denote this fraction, and note that if a total of M jobs were
observed, then the corresponding fraction Py (M) can be expressed as:
N
P.(M) = 31/[- z My
i=1
where ML is the number of lost jobs observed at node i. Equivalently, if we fix an observation

interval to be of length T, then we can write:
N L
1 M;
P = M 2} T
=

By letting T—ee, (M/T) becomes the total job flow into the system, denoted by f, and (M;L/T)

becomes the loss rate at node i, defined above as L;. Thus, we get:
N

1
PL=7 2L - (1)

i=1

11

and since f is the fixed total system load, the algorithm must minimize the sum of loss rates over all

processors. Thus, assuming the load at each node is given as f;, the problem can be stated as

follows:

determine X;1, X;,---,Xjj;..-,XNN SO @S t0 minimize:

N
Z Li(xli" . .,XNi)
i=1

st. x;20 forallij=1,...N - (2a)
N
Y x;=f foralli=1,...,N ~ (2b)

=1
Using standard results from optimization theory, one can show that the necessary conditions
for solving this problem are the following:

oL, |
aTU=\Vl lfxij>0 - (3a)

-ah 2y, if x;=0 - (3b)
of; ! |
for all i,j=1,...,N, where y; is some constant to be determined. The derivative dL;/0x;; represents
the sensitivity of the loss rate at node j with respect to a change in the flow x;;. This is also referred
to as the marginal or incremental loss rate at node j with respect to jobs coming from i. From node
i's point of view, the interpretation of these conditions is as follows: the job flows x;; (allocated by
1) must be set so that all marginal loss rates are equal, provided x;;>0; if x;;=0, then the
corresponding marginal loss rate must be higher (i.e. node j is a particularly bad node). An
algorithmic implementation can now be easily derived, whereby each node gradually adjusts its job
flow allocations until conditions (3a), (3b) are satisfied. The crucial information required for the
execution of such an algorithm consists of the marginal loss rates above.
Before describing the distributed algorithm, note that the number of marginal loss rate estimates

needed is actually only N. To see this, let:

12

and observe that:
oL, _ aL,- BBj oL.

J -

axij - GBJ 3xij - aBJ,

which represents the sensitivity of the loss rate at node j with respect to the total incoming job flow
B;- This simplification holds as long as L; is a function of B; and not the N individual flows x;;,

i.e. as long as these flows are indistinguishable at node j.

3.1.1. Distributed Algorithm Description.

First, note that rather than controlling x;; at node i, we can define routing variables:

x-.
¢ij=—ff""v 0<¢;<1
1

representing the fraction of job flows that node i allocates to j, j=1,...,N.

Next, let us define the following useful quantities:

— min |
LY
aL,;
a; =[53j"'3] ~(5)
ind X o3

e ais the minimum marginal loss rate over all nodes. The corresponding node is denoted by
Kmia» and stands for the "best” node under the current load allocation, i.e. the best
candidate for sending additional jobs to (since this node's loss rate will increase the least).

* a;is the difference between the marginal loss rate at node j and the "best" marginal loss
rate. Note that if kp,= j, then a= 0.

* 4 represents the adjustment to be made to ¢;;, based on current information. The quantity

13

1 is called the step size of the algorithm, and regulates the amount of adjustment to be made
at each iteration.

The precise algorithm execution is the following:

1. Initialize routing variables ¢, i,j = 1,...,N.
2. Wait for some observation period T,,, m=1,2,...

3. Iteration m, m = 1,2,...:

dL,
3.1. Each node j estimates: -5517, j=1,...,N (see next section).
i

oL,
3.2. Each node j sends 5—6-’- to every other node i#j.
j

3.3. Each node i determines a, ki, 8;, and 4;; (defined above).

3.4. Each node i updates its routing variables ¢;3, j = 1,...,N:

01 — djjr 3#Kmin
m+l
L= -7
LT N
o;j + A» Kmin
t ktkrnin

4. Repeat steps 2 and 3.

The issue that remains is the estimation of the marginal loss at each node in step 3.1.

3.1.2. Marginal Loss Estimation.

Returning to the node model in Fig.2, we now address the question: how can we estimate the
sensitivity of L; with respect to the total incoming flow 3,7 We will restrict ourselves here to one
approach which allows this process to be done on-line, based on the Perturbation Analysis (PA)
methodology.

Consider a node in isolation, and let arriving jobs be indexed by k=1,2,... Let a, denote the
arrival time of the kth job, d, its departure time, and w, its waiting time in the queue. Furthermore,

suppose each job is assigned a processing time denoted by m, for the kth job. In our model, if w,

14

> T, the job is lost (T is the deadline for the job). Thus, if Sy is the actual service time the system

provides this job, we can write:
{ L if Wi < Tk

Sy =
0, otherwise
It is easy to see that the departure time satisfies the following recursive equation:

dy, = max {dy;, a) +S;, k=1.2,. -(8)
Similarly, since d; = wy + Sy, the waiting time satisfies:

wy, =max {w,;+Sg -4, 0}, k=1,2,... -9
where A, is the k! interarrival time defined by Ay = a, - a, ;. Note that w, = 0 whenever the kth
job terminates an idle period at the processor. Defining:

Iy =ag-dyy = Ay - Wiy =S¢ | -(10)
note that the duration of an idle period is given by I, provided I, > 0 in (10).

Now let the incoming flow B be perturbed by some amount 8f. Equivalently, the mean
interarrival time of jobs 0=1/p is perturbed by an amount 3c. Thus, all interarrival times are
perturbed by some amount 8A, which is easily obtained from 86 depending on the job interarrival
time distribution. This causes perturbations dw, in the waiting times wy. These perturbations, in
turn, may affect the service times S,. To understand this perturbation process in more detail, note

that in a perturbed stochastic realization, (9) becomes:
W'k = max [W'k_l + S'k-l - A'k' 0) , k=1,2,... -(1D

where W'y = wy + 8wy, S’y = S, + &Sy, and A’y = Ay + dA,. Similar to (10) we can also define

I'y as follows:
I'k = Ak + 8Ak - Wk_l - SWk_l' Sk_l = SSk_l '(12)

Our goal now is to determine recursive expressions for dw; and 8S, combining the equations

above. As long as these expressions depend only on quantities which are directly observable while

15

the system is in operation, one can always predict on-line the effect of a flow perturbation.

Following some algebraic manipulations, we get:

0 if I, >0,Ty>0
ka—l + SSk_l - SAk if Ik <0, I'k >0
\ I if I, <0,T, >0
pLo% if Wy > T ka < T~ Wy
SSk = -y if Wi < Tk» 8Wk < Te—Wi - (14)

0 otherwise

where it is important to observe that dwy and 8S; are evaluated based on known information: Sw;
and 3S, are the iteration variables (initialized to 0); 7, and m, are given for every job; I, is obtained
from (10); dA, is computed based on the flow perturbation of interest and the interarrival time
distribution; and I'y is obtained from (12) using known values.

From a computational standpoint, the procedure for obtaining 8w, involves only simple
arithmetic and comparisons, as shown in (13), (14). In addition, it is assumed that all arrival time
information is stored with the job (time stamping). The only addiﬁonal burden is the need to save
prior service time information 8Sy ; in evaluating dw,.

Of course, our ultimate objective in the distributed load sharing algorithm is to estimate
derivatives of the form dL/df3, where L is the loss rate at the standalone processor model we have
considered here. Given 8w, however, this is a relatively simple task. Let M,L be the number of
lost jobs after k jobs have been served (either actually processed or rejected), and let SM, L the

perturbed value due to 8. We can now evaluate SM,L on-line as follows:

SML" -1 if Wi 2 Ty, 8Wk < T~ Wi
My, =1 SME+1 if w ST, dw, < T—w, -@15)

0 otherwise

Finally, an estimate of the derivative dL/9f is given by:

16

1 \oMy
(&)=
where dy defines the length of the observation period on which the estimate is based, 3P is

sufficiently small, and M, L is obtained from (15), using (13) and (14) to evaluate dw,.

3.2. Simulation Results.

In this section, we present results from the algorithm implementation on simulated distributed
processing systems. Our objectives here are:

* to demonstrate the convergence of this load sharing algorithm, both for simple models
(where analytical solutions may be found), and more complex ones (for wﬁich analytical
solutions are not available).

* todemonstrate the adaptive nature of the algorithm, where flows are automatically adjusted
in response to drastic changes in the system's operating conditions.

* to study the effect of the two parameters affecting the performance of this algorithm: the
step size 1], and the observation period length T, which defines the points where flow
adjustments are made.

In the results that follow, we denote by A, and S; the arrival and service process characteristics at
node i. We also denote by C; the deadline (waiting time constraint) distribution. For instance, A,:
EXP(1.0) indicates that the interarrival times at node 2 are exponentially distributed with mean 1.0;
C,:CO(2.0) indicates that all jobs submitted to node 2 have a constant deadline fixed at 2.0 sec.

In the first few cases studied, we have considered a four-node system and examined the

following cases.

Case I: A, Ay As, Ay EXP(1.0)
S,: EXP(1.0), S,, S, S4: EXP(4.0)
Cy, Cp, C3, Cq: CO(2.0)

In Fig. 3, for a fixed observation period of length T, defined by 30,000 jobs per iteration, we

17

show how the performance (in terms of fraction of lost jobs) improves as a function time and

convergence is attained, provided the step size 1 is sufficiently small. Note the instability resulting
at N=5.0x10-1. In Fig. 4, we study the effect of observation period length for a fixed step size
1n=5.0x10-2. For the case of 1,000 jobs per iteration only, performance initially tends to the
optimum very rapidly; subsequently, however, the loss fraction experiences oscillations due to the

high variance of the marginal loss estimates.

Case 2: Ay, Ay, As. Ag: EXP(1.0)
81: EXP(IO), Sz, S3, S4I EXP(40)
Cy, Cp, C3, Cq: UN[1.5,2.5]

The only change here is in the deadline distribution: deadlines are now drawn from a uniform
distribution in [1.5,2.5] (mean deadline is the same). Results are shown in Fig. 5, with N=5.0x10-

2 and 20,000 jobs per iteration. Note that the loss fraction converges around 0.60 as before.

Case 3: Al’ A2, A3, A4: EXP(I.O)
S,: UN[0.5,1.5], Sy, Ss, S4: UN[3.5,4.5]
C,, Cy, Cs, Ca: CO2.0)

In Fig. 6, we show algorithm convergence with N=5.0x10-2 and 20,000 jobs per iteration. In this
case, however, node service times are bounded through uniform distributions. It is still possible to
obtain analytical expressions for loss rates in this system; however, our aim here is simply to
demonstrate the validity of our estimation procedure, which does not require any change compared

to the previous models.

Case 4: Aj, Ay, As, Ay UN[0.5,1.5]
S,: UN[0.5,1.5], S;, S3, S4: UN[3.5,4.5]
Cl’ C2, C3, C4Z C0(20)

This is similar to Case 3, except for the interarrival time processes, which are also uniform. No
analytical expressions are availahle for such node models. Results with n=5.0x10-2 and 20,000

jobs per iteration are shown in Fig. 7.

18

Fraction of job Jost

0.95
-
a
'y q
| .
0.85
O eta=1.0E-2
-~ eta=7.0E-2
o eta = 5.0E-1
g
0.75 1 4 A
0.65 -
0.55 1 v L o L
0 10 20 30

of iteration(30000 jobsf/iteration)

Figure 3: Effect of Step Size on Load Sharing Algorithm (4 nodes, Case 1)

19

- @ 1000 jobs/ite
;O, 0.65 - 5000 jobs/ite
Ee
2
©
c
L
o
S
w
0.55 v T v T M T M A
0 10 20 30 40

Time(*400)

Figure 4: Effect of Observation Period Length on Load Sharing Algorithm (4 nodes, Case 1)

20

Fractlon of jobs lost

0.75 1

< UN[1.5,2.5]

0.65 A

0.55 v T v T Y T Y T — |

of iteration { 20000 jobs/iteration)

Figure 5: Uniformly Distributed Waiting Time Constraint (4 nodes, Case 2)

21

Fraction of jobs lost

0.75 W

& SD(UN)
0.65

0.55 +————F————F————————1———

of iteration { 20000 jobs/iteration)

Figure 6: Uniformly Distributed Service Times (4 nodes, Case 3)

22

Fraction of jobs lost

0.75

0.65 - o INATST(UN)

0.55 -

of iteratlon (20000 jobs/iteration)

Figure 7: Uniformly Distributed Intrarrival and Service Times (4 nodes, Case 4)

23

0.6 T

0.5 4

Fractlon of jobs lost

- G/GN

ot iteration (20000jobs/iteration)

Figure 8: Generally Distributed Intrarrival and Service Times (4 nodes, Case 5}

24

0.8 1

0.6
% @ adaptivity

& n=7.0E-2

Fractlon ot jobs lost

of iteration (20000 jobs/iteration)

Figure 9: Adaptivity of Load Sharing Algorithm (4 nodes, Case 6)

25

Fractlon of jobs lost

<« 1.0E-2
-~ 5.0E-2

0.73-

o.71;

0.69j

0.67 -

0.66 ———nv—1——+—F————7——1———
0 10 20 30 40 50 60

of iteration (30000jobs/iteration)

Figure 10: Effect of Step Size on Load Sharing Algorithm (7 nodes)

26

0.76 =

<& 20000jobs/ite
-+~ 30000 jobsiite

Fractlon of jobs lost
,_Q——‘

0.66

Time(*2000)

Figure 11: Effect of Observation Period Length on Load Sharing Algorithm (7 nodes)

27

Case 5: A,: U7[0.5,1.5], Ay: EXP(4.0), A3 CO(5.0), A4: DP(3.0,0.8; 8.0,0.2)
S,: UN[0.5,1.5], S,, S3. S4: UN[3.5,4.5]
Cl’ Cz, C3, C4: C0(20)

In this case, arrival processes are quite different at each node. At node 4, we have a discrete
probability distribution, i.e. the interarrival time is 3.0 with probability 0.8 and 8.0 with
probability 0.2. Once again, we show convergence in Fig. 8, with 1=5.0x10-2 and 20,000 jobs

per iteration.

Case 6: A,: EXP(1.0), A,: UN[3.5,4.5], A;: UN[7.5,8.5], A4: EXP(3.0)
S;: EXP(1.0), S,: EXP(4.0), S3: EXP(6.0), S4: EXP(8.8)"
Cy» Gy, C3, C4: CO2.0)

Our purpose here is to demonstrate the adaptive properties of this algorithm in a general system
with different arrival processes and inhomogeneous processors (node 4 is 8 times faster than node
1).

In Fig. 9 we show the behavior of the algorithm when node 1 experiences a degradation of a
factor of 20 (i.e. the mean service time becomes 20.0 after the 20th iteration). As expected, the
fraction of jobs lost immediately increases (from about 0.33 to about 0.78). The load sharing is
then gradually adjusted to a new optimal allocation with a loss fraction of about 0.70. Finally, the
initial service rate of nodel is restored, and load sharing gradually returns to an allocation yielding
a loss fraction of about 0.33.

In the remaining cases examined, we have considered a seven-node system. As shown in
Figures 10-11, the basic properties of the algorithm are unaffected by an increase in the size of the
system. The main effect is in the selection of appropriate step size and observation periods, which
become more constrained. In Fig. 10, note that the algorithm tends to become unstable even if

N=5.0x10-2, a value which was sufficiently small in the four-node model.

28

3.3. Extensions to Dynamic Load Sharing.

For the static distributed load sharing algorithm considered above, it is clear that the choice of step
size and observation period length parameters is critical in guaranteeing fast and reasonably smooth
convergence. There are several simple enhancements one can immediately notice, which remain to
be done. Specifically, there is no reason that these two parameters should remain fixed throughout
the algorithm execution; it is reasonable to start out with large_step size and short observation
periods, which can provide fast initial improvement. Subsequently, these parameters can be
adjusted to avoid wnstability and to gradually approach optimal performance.

Another issue that remains to be addressed is that of the effect of communication delays in
transferring jobs through a network. When such delays are not negligible, we can no longer
replace the individual marginal losses L /Ox;; by the single derivative dL/0B;, where B; is the total
flow into node j. In other words, rather than a single class of jobs, node j must now distinguish
between N classes (depending on the source of the job), or at least two classes: local and remote.

The next interesting task is that of extending load sharing to include instantaneous state
information, such as the job backlog (queue length) x; at node i. One can then investigate
threshold-based load sharing schemes, which operate as follows:

e whenever a job is submitted to node i, check the queue length x; and compare it to some

specified threshold T; (to be determined).

e if x; <T;, then keep the job at node i.

 if x; 2 T}, then send the job to some other node, using routing variables ¢;;, j=i.

Thus, the problem here involves both adjusting the thresholds and the routing variables. Note that
T, is integer-valued, hence standard gradient estimation techniques (including PA) are not
applicable. It is often the case that such systems are characterized by discrete (integer-valued)
parameters. Part of our work has therefore focused on investigating how to obtain sensitivity
estimates in this case. This work is outlined in section 3.4, and described in more detail in [8] (also

Appendix B).

29

3.4. Sensitivity Analysis for Distributed Processing Systems with Discrete
Parameters.

The problem we have addressed is the following. Suppose a system is characterized by several
discrete parameters (such as the thresholds defined above). Selecting the optimal values of these
parameters can drastically affect the performance of the system. Furthermore, these parameters can
be used to automatically adjust the system to changing operating conditions (e.g. processor
failures, sudden wraffic increases). However, to be able to make such adjustment requires
knowledge of the performance sensitivity with respect to the parameters. This information is
generally very hard to obtain, since the functional relationship between performance measures and
parameters is not available.

The main idea we have investigated is that of modeling systems of interest through augmented
Markov or semi-Markov chain models. We have developed a general framework for obtaining the
types of sensitivities mentioned above, and have verified its validity for some simple cases (see
Appendix B). This approach is still based on direct observation of a system in operation, and
requires little overhead. It remains to use this approach in order to implement a dynamic load-
sharing scheme as described in the previous section.

Another area where this approach appears to be promising is that of scheduling different types
of jobs at a processor. This is a complex problem of significant practical interest, since it is often
the case that jobs are classified in terms of priority, real-time constraints, execution length, or other

characteristics. We present a brief overview of the problem in the next section..

3.4.1. Dynamic Processor Scheduling.

As shown in Fig. 12, the scheduling problem involves selecting the next job to be processed from
a collection of K queues, each representing a different class. In the simple case where the process

rate of class k is [, and a measure of priority is represented by the waiting cost per unit time ¢y, it

30

can be shown that the policy minimizing the mean job delay is a simple staric one: always process a
job from the class with the highest (u,c,) value [9]. If, however, real-time constraints are present,
queue capacities are limited, or other complications are introduced, a dynamic scheduling policy is
expected to provide better performance. For some simple cases, we have early results showing that

threshold based policies are in fact optimal.

PROCESSOR
P 1
— \ \
k L—:—’Nl :
N \
. ! . '
T : SCHEDULER —O—i—»
]
1 |]
k=K N
||]
] !

Figure 12: The Processor Scheduling Problem

The policy we have fomulated to be analyzed using the augmented chain approach described in
Appendix B is the following. Suppose job classes have been prioritized so that the highest priority
jobs are in queue 1, and so on. Our objective here may be to minimize a combination of average
delays and loss fractions for jobs with deadlines. Then, for the case where K=2, consider:

« if N; > T, process class 1

e if N; T, then: if N; > T,, serve class 2, otherwise serve class 1.
In this scheme, the processor only serves class 2 jobs if queue 1 is sufficiently low and queue 2
sufficiently high. As in other threshold-based policies, the question is that of determining the
optimal values of T;, T,. This problem remains to be solved, and comparisons with other

scheduling policies remain to be made.

4. DESIGN AND ANALYSIS OF PARALLEL PROCESSING SYSTEMS.

In this section we report on two problems related to parallel processing systems that we studied.

31

In the first problem we studied the behavior of two different scheduling policies on a
multiprogrammed multiprocessor that executes parallel programs. In the second problem, we
developed mathematical models for a class of parallel systems that can be modeled as acyclic fork- .

Join queueing networks. We report on each of these in the remainder of this section.

4.1. Multiprocessor scheduling

We studied the performance of a first come first serve (FCFS) and processor sharing (PS) policies
for scheduling parallel programs on a multiprogrammed multiprocessor. Specifically, we
developed analytic models that predict the behavior of PS when used to schedule fork/join jobs
onto a multiprocessor and compared its performance to FCFS. Here a fork/join job consists of a
number of tasks that can be executed independently of each other. The job is not considered to be
complete until the last task completes. The fork/join job is the simplest nontrivial example of a
parallel job.

We developed an analytic model that provides tight bounds on the expected response time of a
fork/join job under the assumptions that jobs arrive to the multiprocessor according to a Poisson
process and that task service times are independent and identically distributed exponential random
variables. Details of the analysis can be found in [10] (also Appendix C). We study two PS
disciplines, one called task scheduling processor sharing, the other job scheduling processor
sharing. The first policy schedules tasks independently of each other, thus allowing parallel
execution, whereas the second policy schedules entire jobs to individual processors. The second
policy does not allow parallel execution of a job. We find that task scheduling does not always
outperform job scheduling. Soecifically, job scheduling always performs better when the
processor utilizations are high. This is because at high utilizations there is little advantage to parallel
execution of a single job. On the other hand, task scheduling gives preference to jobs with many
tasks over jobs with few tasks unlike job scheduling which gives equal preference to all jobs.

Consequently, small jobs complete more quickly at high utilizations under job scheduling.

32

We also compare processor sharing with FCFS. We find that FCFS outperforms processor
sharing for a large class of workloads. We also compare the performance of processor sharing and
FCFS for systems with two classes of jobs. We find that the system performs poorly when the
processors are partitioned between the classes as compared to a system that shares the processors
amongst all jobs.

There remain many unanswered questions. These include: What are the effects of priorities on
the behavior of different classes of jobs? What are the effects of real time constraints? How should

job and task scheduling be integrated together to achieve the best features of each policy?

4.2. Models of Parallel Systems.

We studied a class of acyclic fork-join queueing networks (AFJQN's) that arise in the performance
analysis of parallel processing applications. We obtained the maximum throughputs and developed
upper and lower bounds on the response times of jobs that execute in these systems. We describe
what an AFJQN is and the results of our analysis in the remainder of this section.

AFJQN's arise naturally in parallel processing applications. Many parallel programs are
decomposed into tasks, each of which can execute on a separate processor. The division of the
parallel program into tasks can be described by a directed graph where the nodes of the graph
correspond to tasks and directed edges represent the precedence relations between tasks. In many
cases the underlying graph is acyclic and the program is implemented with the use of fork and join
constructs. Briefly, a fork exists at each point in a parallel program that one or more tasks can be
initialized simultaneously (). A join occurs whenever a task is allowed to begin execution
following the completion of one or more tasks. Forks and joins are reflected in the underlying
computation graph in the following manner. A task that has one or more outgoing edges

corresponds to a fork. A task with one or more incoming edges corresponds to a join. These are

(1) Strictly speaking a fork implics that {two or more] tasks are started. However, our definition simplifies the
notation required for the analysis o

33

exemplified in the parbegin and parend constructs available in parallel programming languages

such as Concurrent Pascal [11), Concurrent Sequential Processes (CSP) (12}, and Ada [13].

Join

(2 g

(a)

3
‘ NAB .
N NS
—
4
(b)
(a) A program (b) The associated

Fork join
Queueing network

Figure 13: (a) A parallel program. (b) Associated AFJQN.

34

Consider a multiple processor where each task of a specific program is mapped onto a separate
processor. The execution of a single program request can be described as follows: (i) Upon
completion of a marked task, tokens associated with the program are routed to each processor
handling the tasks that follow the marked task in the underlying computation graph; (ii) Once a
processor has received tokens from all tasks that precede a marked task in the computation graph,
this processor is allowed to execute it. Let this multiprocessor be required to service a stream of
requests corresponding to different instances of that program and assume each processor executes
its tasks in the same order that program requests arriveto the system. We have described, in brief,
an AFJQN. Figure 13a illustrates a hypothetical parallel program using forks and joins, and Fig.
13b illustrates the corresponding fork-join queueing network.

This class of queueing networks has not, in general, been solved. In our work, we have
obtained expressions for the maximum throughput in job requests per unit time that can be
processed for an arbitrary computation graph where the number of processors is at least as large as
the number of tasks and for very general assumptions on the job request process and service time
requirements of all of the tasks. In addition, we have obtained upper and lower bounds on the
expected prdgram execution time through the use of stochastic ordering principles (see [14]). We
have shown, for example, that decreased (increased) variability in the time between job requests
results in a decrease (increase) in the job execution time. Consequently we can numerically obtain
bounds by assuming that the times between job arrivals are constant. In addition, we have shown
that if we assume that the times required to traverse each path between the source and the
destination in the AFJQN, then we obtain a pessimistic bound on the average response time by
taking the average of the {maximum} of the times over all paths between source and destination.
Details of the analysis can be found in [15] (also Appendix D).

A number of tasks remain to be done and a number of interesting questions remain to be
answered. For example, we have not developed a software system to actually calculate bounds on

the mean program execution time. In addition, there are numerous other parallel processing

35

architectures to be considered such as one where tasks are not mapped to a processors but, rather,

a processor is allowed to execute any task that is ready for execution. The work reported above
does not address some of the issues raised in real-time systems. For example, what is the

probability that a job will miss a deadline?

5. CONCLUSIONS.

We have addressed both system-level and node-level issues in distributed systems. At the system
level, we have considered load sharing for jobs with real-time constraints, and determined that
simple policies can provide performance very near the ideal optimum. We have also derived and
tested load sharing algorithms which can be implemented under general conditions, requiring no
specific modeling assumptions or knowledge of system parameters. At the node level, we have
formulated a task scheduling problem, and have investigated some parallelism issues for the case
of multiprocessor nodes. We have determined that the advantages of parallelism are dependent on
several factors, and that a simple FCFS approach is occasionally preferable.

In the development of adaptive load sharing algorithms, we have limited ourselves to the static
case. We have, however, obtained in the course of our work a general framework for on-line
marginal loss estimation to be used for extensions to the dynamic case. This is the subject of future
work. Furthermore, an issue to be addressed is that of the interaction between the system level and
node control in the presence of real-time constraints. The task scheduling problem itself also
remains to be addressed in detail; our results to-date have generated a suitable framework for
accomplishing this in the near future. Finally, our work on parallelism issues has given rise to a
number of problems, such as the effect of priorities, and the question of effectively combining job

and task scheduling to achieve the best features of each.

36

REFERENCES

(1] D. Eager, E. Lazowska, and J. Zahorjan, "Dynamic Sharing in Homogeneous Distributed
Systems", IEEE Trans. Software Eng., SE-12, 5, pp. 662-675, 1986.

[2] J. Stankovic, K. Ramamritham, and S. Cheng, "Evaluation of a Flexible Task Scheduling
Algorithm for Distributed Hard Real-Time Systems", IEEE Trans. Comput., C-34, 12,
pp. 1130-1144, 1986.

[3] R. Chipalkatti, and J.F. Kurose, "Load Sharing in Soft Real-Time Distributed Computer
Systems", unpublished manuscript, 1987.

[4] C.G.Cassandras, and S.G. Strickland, "Perturbation Analytic Methodologies for Design and
Optimization of Communication Networks", to appear in IEEE J. on Selected Areas in
Commun., 1988.

[5] M.L Reiman, and A. Weiss, "Sensitivity Analysis via Likelihood Ratios”, Proc. 1986
Winter Simulation Conf., pp. 285-289, 1986.

[6] R.Y. Rubinstein, "The Score Function Approach for Sensitivity Analysis of Computer
Simulation Models", to appear in Mathematics and Computers in Simulation, 1987.

{71 R.G. Gallager, "A Minimum Delay Routing Algorithm Using Distributed Computation”,
IEEE Trans. on Communications, COM-25, 1, pp. 73-85, 1977.

[8] S.G. Strickland, and C.G.Cassandras, "Augmented Chain Analysis of Markov and Semi-
Markov Processes"”, Proc. 25th Allerton Conf., 1987.

{91 I. Baras, A. Dorsey, and A. Makowski, "Two Competing Queues with Linear Costs and

Geometric Service Requirements: The pic-rule is Often Optimal“,Adv. Appl. Prob., 17,
186-209, 1985.

{10] D. Towsley, J.A. Stankovic, and C.G. Rommel, "A Comparison of the Processor Sharing
and First Come First Serve Policies for Scheduling Fork-Join Jobs in Multiprocessors", to
be presented at Symp. of High Performance Computer Systems, Dec. 1987.

{11] P. Brinch Hansen, "The Programming Language Concurrent Pascal”, IEEE Trans. Software
Eng., SE-1, pp. 199-207, 1975.

(12) C.A.R. Hoare, "Communicating Sequential Processes", Prentice-Hall International, London,
1978.

[13] I1.C. Pyle, "The Ada Programming Language", Prentice-Hall International, London, 1981.

(14] D. Stoyan, "Comparison Methods for Queues and Other Stochastic Models", J. Wiley and
Sons, NY, 1984.

[15] F Baccelli, W.A. Massey, and D. Towsley, "Acyclic Fork-Join Queueing Networks",
subm. to J. of ACM, 1987.

37

APPENDIX A

38

Load Sharing in Soft Real-Time
Distributed Computer Systems!

RENU CHIPALKATTI?

JAMEs F. KUROSE

Department of Computer and Information Science
University of Massachusetts
Amherst, Mass. 01008

Abstract

In soft real-time distributed computer systems, a job submitted at a node in the network
must complete or begin execution within a specified time constraint, otherwise it is considered
lost. When a single node occasionally experiences an overload of jobs, it may still be possible
to execute some of the otherwise lost jobs by invoking a load sharing algorithm to distribute the
local overioad to other system nodes. We examine several relatively simple approaches to load
sharing and show that these simple real-time load sharing algorithms may often perform as well
as their more complex counterparts. Approximate analytic performance models are developed and
validated through simulation. The performance resuits suggest that, over a relatively wide range of
systemn parameters, the performance of these simple approaches are substantially better than the
case of no load sharing and often close to that of a theoretically optimum algorithm.

"This work supported in part by the National Scieaze Foundation under contract DMC-8504793 and RADC under
contract F302602-81-C-0169

*The author is now with GTE Laboratories, Waitham MA

~39-

1 Introduction

A primary motivating factor behind the development of distributed computer ayastems has been the
need to efficiently utilize the resources available within the distributed environment. In this paper,
we consider the case of sharing the computational resources of the system nodes. This can be done
by transferring jobs which are submitted to heavily loaded nodes to more lightly loaded nodes. This
process of sharing the workload over the entire system is generally known as [oad balancing or load
sharing (LS). Although a cost (e.g., a time delay) is typically incurred by transferring a job from one
node to another, the performance of a distributed computer system can generally be improved by an

effective load sharing policy [20].

In this paper, we study soft real-time systems. Real time tasks can essentially be classified into
two: (1) tasks which must begin execution within a specified amount of time after their initial arrival
to the system and (2) tasks which must complete execution within a fixed amount of time after their
initial arrival to the system. The first set of jobs are characterized by a bounded queueing time
whereas the second is characterized by a bounded waiting time. For both types of jobs, those failing to
meet their deadline are considered lost. One important purpose of load sharing in a real-time system
then s to minsmize thte percentage of jobs lost. Examples of systems exhibiting such soft real-time
behaviour include applications in distributed systems for industrial process control (23], autonomous
manufacturing {3], and air traffic control [9]. In these applications, results of a computation are typically
needed in order to perform some control function at a given point in time. Failure of a job to meet
its deadline may then require the initiation of a recovery procedure, which can be very costly from a

performance standpoint [9)].

It has been previously noted that for non-real-time systems, relatively simple decentralized policies
may often provide effective load sharing in a distributed system {21] [7]. These works, in particular the
analytic work in (7], motivate our present work which establishes complementary results for the case
of real-time systems, systems having performance requirements and evaluation metrics which differ
significantly from those of non-real-time systems. We stress that, as in {7, our goal here is not to
propose any specific real-time load sharing algorithm nor to necessarily develop performance models
for predicting the absolute performance of specific LS approaches, but rather to address the more
fundamental question of the level of complexity required to implement effective load sharing, in this
case in a distributed real-time environment.

In this paper, we adopt an analytic approach towards evaluating various approaches towards real-
time load sharing. In section 2, we review previous work in the area of real-time load sharing and
then, in section 3, describe the distributed system model used in this paper. Our analysis for tasks
with bounded queueing time begins in section 4, and we adopt the general methodology (7] (also [25])

of first developing a model for a single node in isolation and then combining these node-level models

~40-

into a single system level-model. In section 4.1, we first develop a madel of job loas from a generic
system node in isolation. Because we are interested in studying real-time performance, our model of a
node is necessarily different from that traditionally adopted in load balancing studies for non-real-time
systems. [n particular, rather than adopting a Markov chain model based on the number of jobs queued
for execution at a node, we characterize a node's state by its amount of “unfinished work” and derive
a set of integro-differential equations governing the evolution of unfinished work at a node. We must
additionally carefully distinguish between locally-arriving jobs and transferred jobs, since the latter

arrive with tighter time constraints due to the transfer delay incurred.

In section 4.2, we then compose instances of this generic node model to create a system-level model
for the entire distributed system. Central to this composition is the assumption (first introduced in
|7), and also used in [25]) of independence among the states of different nodes, an assumption we
later validate for our system under study through simulation. We then use this system-level model
to quantitatively study the real-time performance of two simple approaches towards real-time load
sharing. In both of the approaches studied, a job whose deadline can not be met locally may be
transferred to a remote node for possible execution. In the first approach, termed “quasi-dynsmic load
sharing” (QDLS), a job which can not meet its deadline locally is sent to a probabilistically-chosen
remote node. This job will then be either successfully executed or lost at the remote node. We note
that the policy of probabilistically selecting a remote node for execution has been extensively studied
for the non-real-time case {15,19,21,24,7]; the policy of transferring jobs when real-time constraint can
not be met locally, however, has not been examined in any previous studies. The second approach
studied is the probing approach examined in (7] for the case of non-real-time systems. In this approach,
a node may probe some limited number of other system nodes and then transfer a job if one of these
nodes can execute the job within its deadline. If none of the probed nodes can do so, the job is then
lost. Finally, we compare the QDLS and probing policies to the bounding cases of no load sharing and
the theoretically optimum LS algorithm. A similar study is performed for jobs with bounded waiting
time in section 5. However we shall restrict ourselves only to the simple probing policy as the model
becomes sufficiently comlpex.

We will see that for a relatively wide range of system parameters, the simple approaches studied
perform significantly better than the case of no load sharing and often perform remarkably close to
that of the theoretically optimum algorithm. Our conclusion thus complements previously-established
results for LS in non-real-time systems [7]: very simple approaches, which use only a minimal amount
of state information and have an extremely simple decision-making process (and hence are simple to

implement) are often sufficient to provide effective load sharing in a distributed real-time computer
system.

“41-

2 Previous Work on Real-Time Load Sharing

We can classify previous efforts in the area of load sharing in real-time systems into two classes:
those that adopt the multiprocessor model and those that adopt the distributed system model. In the
multiprocessor model, jobs arrive at an omniscient centralized controller which inatches (schedules)
the jobs to the processors. Typically, the set of jobs arrival times, timing constraints and execution
times are known a priort to the centralized acheduler. In the distributed system model (adopted in
this paper), jobs may arrive to any node in the system and a node has no a priors information about

future arrival times of jobs nor about the atate of the other nodes in the network.

The work of Muntz and Coffman [18] and Leinbaugh [12] adopts the multiprocessor model. These
efforts are directed towards determining a minimum system configuration which can support the spec-
ified job load for a given process to processor scheduling policy. Real time multiprocessor scheduling
has also been examined in [17], in which a graph model is used to represent timing constraints among a
set of periodic tasks. In (2], an approximate algorithm is presented for optimally scheduling n periodic
tasks on m processors. The real time scheduling problem for multiprocessors was also considered in
[16], although the performance metrics adopted in [16] (essentially, an equal average load at each node)

are perhaps more applicable in a non-real-time environment.

There have been relatively few previous efforts adopting the distributed system model of real time
load sharing, and it is clear that work in this area has just recently begun. For example, the explicit
purpose of (13| is the study of real time scheduling in a uniprocessor environment as a precursor to
examining similar issues in a distributed environment. In [26] [22], a specific load sharing scheme for
real time systems is proposed and its performance examined through simulation. The load sharing
policy introduced in (26 [22] is based on the use of focused addressing and bidding and is meant for
distributed systems in which real time periodic jobs are given preference over other real time jobs.
In this approach, a node which can not guarantee the execution of a job within the specified time
constraint permits other nodes to bid for the execution of the job and at the same time may transfer
the job to that node (or set of nodes) which are estimated to be most likely to be able to successfully
execute the job. Although this sophisticated algorithm was shown to perform quite well, it is closely
tied to the notion of periodic tasks. Also, the authors do n‘ot consider the performance of the bidding
scheme relative to all but the simplest of other possible approaches. In this paper we demonstrate that.
in fact, simple approaches may perform as well as the more sophisticated approaches over a wide range

of system parameters.

3 The Model of the Distributed System

—42-

Commuscalion

Netvork

b

Figure 1: Model of a distributed system

Our model of the distributed system is shown in figure 1 The sytem consists of N nodes which
are interconnected through a communications network; the network is assumed to be logically fully
connected in that every node can communicate with every other node. A stream of jobs is submitted
locally. to node s. Unless stated otherwise, we will assume that the nodes are heterogeneous in the
sense that each node may have a different arrival rate of externally submitted jobs, but homogeneous
in the sense that a job submitted at any node in the network can be processed at any other node in

the network; this latter assumption can be easily relaxed.

We are interested in studying LS policies in a soft real time system, in which a job 1s lost if it can not
complete or begin ezecution, (as the case may be) within a given time constraint. If the deadline cannot
be met locally, a LS algorithm may be invoked to transfer the job to another node which can possibly
meet the jobs demands. We will assume that a job cannot be transferred more than once in order
to avoid the problem of “trashing” and assume that a constant delay, d, (representing communication
and transfer processing delays) is required to transfer a job from one node to another. Thus, if a job
first arrives at node ¢ with an initial time constraint of K1 and is transferred to another node j for

processing, its new time constraint at node j, which we wiil denote K2, will be'equal to XK1 ~ d.

4 LS for Real Time Tasks with Bounded Queueing Time

As mentioned earlier, real time task with bounded waiting time tasks are time contrained such that
a job must begin execution within K1 time units of its initial arrival. For the above mentioned jobs we

will examine two simple approaches:

~-43-

e quasi-dynamic load sharing (QDLS) [15,19,21,24,7}.
e probing (7).

which have been previously studied for non-real-time systems and compare their real-time performance
with that of the bounding casea of no load sharing and the theoretically optimum real-time LS aigo-
rithm.

As discussed in 7], an LS approach can be characterized by its transfer policy, and its location
policy. The tranafer policy determines when a job should be transferred for remote execution. The

location policy, determines where (i.e., at which remote node) a transferred job will be executed.

Both approaches examined have the same simple transfer policy:

e Transfer policy (QDLS and probing): A job is transferred from node s to a remote node if
and only if the unfinished workload of the jobs currently at node ¢ exceeds the time constraint
for the job. A job will thus either queue for service at the node at which it initially arrives (in
which case it will be guaranteed execution) or will be transferred to some remote node. We note
that the transfer policy decision is made dynamically, based on the current state of the node.

We are not aware of any previous analytic studies which have considered this transfer policy in

a real-time environment.

The location policies of QDLS and probing are:

e Location policy (QDLS): If a job is to be transferred, a remote “target” node (to which the job
is sent) is chosen probabilistically and independent of the current state of the remote nodes. Note
that QDLS requires no non-local, dynamic state information. Although this location policy has
been extensively studied for the non-real-time case {15,19,21,24,7], we are not aware of previous

analytic work addressing this problem in a real-time environment.

e Location policy (probing): When a job is to be transferred a node prodes some specified
number of other system nodes (chosen at random) to determine if one of them can currently
guarantee execution of this job, i.e., has an amount of unfinished work less than the time constraint
of the job minus the transfer delay. A node may probe up to some maximum number, L,, (the
probe limit) of other nodes. If none of the probed nodes can execute the job, the job is lost
We note that probing may be considered a simplified form of didding [22]. The probing policy
studied here was first analytically examined in [7] (for non-real-time systems) and we follow their

methodology when studying the system-level model (but not the node-level model) of probing

In the analytic performance models developed in the following sections, we will ignore several aspects

of LS approaches which, in practice, may influence their performance. Specifically, we will ignore the

44—

processor overhead requirec o transfer jobs as well as the overhead and time delays required to probe
a set of nodes. We will also assume in our analytic model of probing (but not in our simulation model
used for validation), that a remote node which responds positively io a probing message will alwavs be
able to execute the transferred job, even though that node’s workload may change between the time it
sends a positive response and the time a transferred job arrives. Our reason for ignoring these details
is that as in (7], rather than analyzing the absolute performance of a specific LS algorithm, we are
inatead interested in analyzring the relative performance of a set of LS approaches as a function of their
complezity. In particular, we are interested in examining possible performance differences between
simple probing, a more sophisticated approach towards LS and a theoretically optimum LS algorithm.
Ignoring the overhead effects, a more complex approach can at best achieve a performance level falling
between probing and the theoretical optimum. If this gap is small (as we find is often the case), the
performance of probing and any more complicated approach are necessarily close. When overhead is
considered, the small performance difference between probing and a more complex approach, which
requires additional communication and computational overhead, can only become smaller. Thus, our
abstract models do provide the basis for a meaningful comparison of the relative performance of real
time load sharing strategies. We also note that when the effects of overhead that we have not modeled
are negligible (as our simulation results demonstrate can be the case), our analytic models also provide

a means for assessing the absolute real time performance of an LS approach as well.

4.1 Performance quels of the QDLS and Probing LS Algorithms

In this section we develop analytic models in order to quantitatively assess the real time performance
of the QDLS and probing LS policies. As a first step, in section 4.1 we develop a performance model
for predicting the steady state job loss from the “generic node” shown in figure 2, without reference to
any spectfic LS policy. This model is then used in section 4.2.1 to predict the real time performance of
a system in which no load sharing (NLS) occurs. Then, adopting the methodology introduced in (7,25]
(with modifications to permit us to examine QDLS in a heterogeneous system), the generic model of
a node in isolation is then extended in sections 4.2.2 and 4.2.3 to provide a system-level model for

studying the performance of QDLS and probing.

4.2 Job Loss from a Generic Node

Figure 2 shows our “generic” model of an individual system node. It consists of an upper queue
and a lower queue, connected to a single server, representing the computational resource at a node. A
job arriving to the lower queue with an execution time of z, must complete execution within K1 + ¢
time units; a job entering the upper queue must complete within K2 + z. Equivalently, a job arriving

to the lower (upper) queue must begin service within an amount of time, K1 (K2) after its arrival;

~45~-

A3(1 - Fi(K2))
Qo

v
(1 - F(K1))

Figure 2: A generic node in isolation

otherwise it will be lost.

The server has a mean service rate of u jobs/sec and the service policy is FCFS across all the jobs
belonging to both the queues; we note that in the case that the difference between K1 and K2 is
small, (as will often be the case when we use this model in a LS context), FCFS closely approximates a
“shortest deadline first” scheduling policy. We assume that the arrival of jobs at the lower and upper
queues can be modeled by Poisson processes with mean rates A; and A3, respectively.

The problem of queues with impatient customers has been well-studied in the field of operations
research. Gavish et al. [8], study an FCFS M/M/1 system where arriving customers are admitted only
if their waiting times plus service times do not exceed some fixed amount. Baccelli et al. {1], study
a single-server system in which a customer is lost when its waiting time exceeds a random threshold.
They derive equations for several configurations of arrival rates, service time distributions and patience
thresholds (time constraints). As we will be only interested in determining the probability of customer

loss, we may adopt a simpler approach than these efforts.

Thus, let F(w,t) denote the probability that at time ¢, the unfinished work in both queues is less
than or equal to w. Without loas of generality we also assume that K1 > K2. If B(z) denotes the PDF
of the service time distribution, then following the approaches in (8] {10], we can derive the following

time-evolution equations for F(w,t + At). We consider three different regions.

In the region 0 < w < K2 we have,
Flw,t+ At) = (1-214A¢L)(1 - LA F(w + At,t)

+ A1AL(1 - A4¢) /0.., B(w - u)d,F(u,t)

46~

+ /\gAt(l - AlAt) ‘/0" B(w - u)duF(u,t)

The expression on the left hand side gives the probability that the unfinished work in the queue at
time ¢ + At is less than w. This condition can be realized in several waya. First, no jobs may have
arrived in the interval [t, ¢t + At]. In this case, there must have been an amount of work less than w+ At
at time t. The second term on the right hand side of the above equation denotes the probability that
exactly one arrival (in time At) at the lower queue brings new unfinished work to the queue such that
the unfinished work at t + At is less than w. Similarly, the third term denotes the probability of exactly

one arrival at the upper queue such that the new unfinished work at ¢ + At is less than w.

In the region K2 < w < K1 we have:
Flw,t+ At) = (1 - A 4A4(1 - 2AL)F(w + At,t)
w
+ A AL - AAL) / B(w ~ w)duF(u,t)
o}

F(K2,t) [B(w - u) {5

+ AzAl(l - A‘At) "
+ (1~ F(K2,0)) [0 LRl

The first two terms of the above equation are similar to those described above. The third term
is for the case of an arrival at the upper queue in the interval [t, t + At]. With probability F(K2,t¢),
the job joins the queue. In this case, the new work brought in by the job plus the unfinished work at
time ¢ must be less than w. Note that the probability of this latter event must be conditioned on the
event of the unfinished work at time ¢t being less than K2. Similarly, with probability 1 - F(K2,t)
the arriving job finds an amount of work greater than K2, and hence does not join the queue. In this
case the unfinished work at time ¢ must have been less than w + At. This probability must also be

conditioned, this time on the fact that an arriving job did not join the queue.

Rearranging the terms in the above two equations and taking limits as At — 0, we get:

dF(w,t) 3F(w,1)

—(Ar+ A F(w,) + (0 + Aa) { /o ¥ Blw - u)d.,F(u,t)} 0<w< K2

at dw
dF(w, AF(w, v
(a‘:’ t) - a(w t) = =X {F(w,t) - ‘/0 B(w - ")duF(u’t)}

K2
—A;{F’(K2,t)—/o B(w-u)duF(u,t)} K2<w< Kl

and taking limits as ¢ — oo, we obtain the following steady state equations:

47—

PO o aaFw) - oo { [T Bw-warw] ocwsxz
PO s {pw) - [B - wdFw]) +
K2
A {F(m) - /o _ B(w- u)duF(u)} K2<w< K1 (2)

In order to provide a check of the above equations, we show in Appendix A that equation 2 can

be independently derived in a different manner using level crossing arguments [4]. In the case that job

execution times are exponentially distributed with a mean of :-‘, the solution to equation 1 is given by:

Flw) = F(0+){,T.:\J:T rdi ;,‘_\f\"::éf\;e"’(“"\"l’)} O<w< K2)
F(w) = F(Kz) + %‘L%.ZF(O"‘)CAQKz{C‘(ﬂ—A])Kz — e—(u—a\”u} K2 < w S K1

At this point, we could now proceed in a similar fashion to derive an expression for F(w) in the
region K1 < w. However, if we are only interested in computing the fraction of jobs lost, we can derive
a simpler third equation by considering flow conservation across the boundaries shown in figure 2. The
total flow into the node consists of the sum of A; and)3, while the total low out ¢ *he node consists

of a departure stream from the server and the two loss streams, one from each of the queues. Hence,
A+ = {1-FO0N)}u+{1-FK2)} 2+ {1 - F(K1)}\ (4)

We can now solve the set of simultaneous equations 3 through 4, to numerically obtain F(K1), F(K2)
and F(0%).

4.3 Incorporating a Generic Node Model into a Distributed System Model

We now incorporate our model of a generic node in isclation into a system-level model in order to
study the performance of no load sharing, QDLS, and probing. In each of our models, each system

node will be represented by the generic node model of figure 2. The arrival rates to the lower and
upper queues at node s will be denoted A} and A}, respectively, and F,(w) will denote the PDF of the
unfinished work at node ¢; note that although F;(w) is a function of A}, A}, K1, and K2, we have not
indicated this functional dependence directly.

When incorporating our model of a generic node into a system-level model, we let the arrivals to

the lower queue at node 1, A, represent the “external” arrivals of jobs to node ; these “external”
’ 1 p

-48-

arrivals, with an initial time constraint (until execution begins) of K1, represent jobs which are first
submitted to the system at node ¢ and are inputs to our model, specifying the load on the distributed
system. With probability 1 — F;(K1), an externally arriving job at node ¢ will nct be able to meet
its time constraint locally (i.e., at node 1). In this case, the job will either be lost or will be sent to

another node for possible execution, depending on the load sharing policy employed.

The arrivals to the upper queue at node i, A}, represent the arrival of “internally transmitted”
jobs to node i, i.e., the arrival of jobs which have been transferred to node s from other nodes in the
system, and thus depend on the LS scheme used. The time constraint (until execution begins) for these
internally transmitted jobs is K2. Recall that d is the fixed delsy associated with a job transfer and
thus X2 = K1 —d. Since a job can be transferred at most once, a job which arrives to the upper queue

and cannot meet its deadline is unconditionally lcst.

4.3.1 Job Loss with No Load Sharing (NLS)

With no load sharing, no jobs are transferred between nodes and hence A} = 0 for all nodes ¢. In

this case, we can solve equations 3 and 4 for F;(0*), Fi(K1) and F;(K2) for a given A} and compute
the system-wide loss by:

N
loss rate V6% = 5™ A{(1 - Fi(K1)) (5)
=1

4.3.2 Job Loss with Quasidynamic Load Sharing (QDLS)

Recall that in our QDLS approach, when an externally arriving job arrives at a node and can not
finish execution within the time constraint, K1+ z, it is transferred to a probabilistically-chosen remote

node for possible execution. In our system-level model of QDLS then, all jobs exiting before joining the
lower queue in figure 2 are transferred to another node for possible remote execution. Let ,\"lj denote
the job transfer rate from node ¢ to node j and let A represent the externally arriving jobs that are

executed locally. Given the QDLS scheme and given that an externally arriving job is transferred if

and only if it can not be executed locally, we have the following flow constraints:
« M- F(KY)) = T, 00 A

o AF(K1) = Af

o A = Efﬂ".# A{‘, for all nodes ;.

~49-

Given a set of flows satisfying the above conatraints, the system-wide job loss under QDLS can be
easily computed. Since all job loss at node ¢ can only occur in the upper queue, we can first solve
equations 3 and 4 for F,(0%), F;(K1) and F;(K2) and then compute the system-wide loss under QDLS
by:

loss rate 9PLS = TN an(1.0- F(K2))

—

(T s AR(1.0- Fi(K2))

(6)

Clearly then, the system-wide rate at which jobs are lost depends on the values of {A{} (both directly
as shown sbove in equation 6 and indirectly through the dependence of F;(K2) at node 1 on {A}'} and

{'\Jx'}) Thus, we are interested in determining the values of {4\?} which minimize equation 6 subject to
the flow constraints; this can be accomplished using any constrained optimization procedure, including

the procedure described in [11].

Finally, we note that unlike {7], we have not assumed a system of homogeneous nodes; this neces-
sitated the use of an optimization procedure. We have, however, adopted two assumptions introduced
in [7] in deriving equation 6. First, we have assumed that the individual F;()'s are independent; that
is, a job’s probability of being executed within its deadline at one node is independent of the state of
the other system nodes. A second assumption is that the arrival process at each of the upper queues,
which is formed by the superposition of the overflow processes of the other system nodes, is Poisson.
We note that these assumptions become asymptotically correct as the number of system nodes gets
very large (7,25] or as the ratio, A}/A} becomes very small. We also note that as shown in section 5,
for N equal to 20 nodes, our simnulation studies yield performance results which are extremely close to

thore predicted by the analysis, thus corroborating the appropriateness of our analytic approximations.

4.3.3 Job Loss with Probing ‘\

For the case of probing, we follow {7] directly and obtain analytic results for the homogeneous case
in which A is identical for all nodes, 5. As a consequence the steady state probabilities F;(K2), F,(K1)
etc. will also be identical for all nodes. Since a job is lost only if it can not be executed locally within
K1 time units and some L, (the probe limit) other nodes are probed at random, each of which is then
found to have a current load of unfinished work greater than K2, we have:

loss rate P°"™ = A} (1 - F(K1))(1 - F(K2))* (7)

Note that we cannot yet solve equations 3 and 4 for F(K2), and thereby compute the loss using 7, for

the Ay which result from the probing policy are still unknow. Again considering the homogeniety of the

system, we note that the steady state transfer rates out of all nodes must be identical; similarly, the

~-50-

rate at which jobs are transferred into the nodes muyst also be equal. This then implies that the steady
state flow of jobs out of any given node must equal the stead, state fluw of internally transmitted jobs
that are accepted and successfully executed at this node. We thus have the following flow constraint
for all nodes:

A1 = F(K1)) = M1 - F(K1)(1 = F(K2))%» = A F(K 2) (8)

where we have dropped the ¢ superscripts and subscripts since the aystem is homogeneous. E uations
3, 4, and 8 provide four equations in four unknowns (F(K1), F(K2), F(0*) and A3). We can now solve

this set of simultaneous equations for F(K1) and F(K2) and directly compute the loss using equation
1.

4.4 Numerical Results

Ir this section we present representative performance results for the QDLS and probing real time
load sharing schemes and compare their performance with that of the ideal case of perfect-information
load sharing and the case of no load sharing (NLS). We consider a 20 node system (the same size
considered in (7]), in which 4 = 1 job/second and a delay of d = 0.2, i.e., the transfer delay is 20% of

the job execution time.

We model the “ideal” case as an M/M/20 queueing system with a time constraint of A1 and have
obtained the M/M/20 performance results through simulation. We note that in the M/M/20 system,
Jjobs are scheduled to available processors using complete information about the system state and incur
no transfer delay. Thus, the “ideal” performance bounds shown in the subsequent results are, in reslity,
unattainable. This will be evident in our performance results, where for large values of K1 and heavy
external arrival rates, the QDLS and the probing curves approach limiting values which are slightly
above and to the left (i.e., poorer performance) than the upper bound predicted by our “ideal” case of
the M/M/20 queue.

Figure 3 shows the fractions of jobs lost as a function of the average system arrival rate,):,’Y__l AY/N
under the QDLS policy. Performance results are presented for different values of the initial time
constraint, A1 (0.5 sec. and 5.0 sec.) and transfer delays of 0.1 and 0.2 time units (10% and 20%

opf the average job execution time). The system load was asymmetric, with half the nodes having an

N : N
. .y A% 3 \
average arrival rate of :-‘ﬁg-—l while the remaining hall had an average arrival rate of —Z;fv*ﬁ Wa

should also note that in order to test our numerical, optimization, and simulation procedures, we first
studied QDLS in a completely symmetric system (not shown). As expected, the optimum {2'/[i # ,;}

were found to be equal, as were the optimum {(At}.

Several properties of the QDLS policy are evident from Figure 3. First, note that even for the most

stringent timing conditions (K =05 and d = 0.2) QDLS performs significantly better than no load

-51-

sharing. We additionally note that as the asymmetry in the arrival rates increases, QDLS performs
increasingly better than no load sharing. While these results might not seem surprising at firat, we
note that QDLS is perhaps the simplest of all possible real time LS approaches and makes use of no
non-local dynamic state information.. We also note that for a time constraint of 5.0 (i.e., where all jobs
must begin execution within 5 times their average execution time), the performance of this simplest of
all LS policies approaches that of the “ideal” case. Moreover, this performance difference is particularly
small in the system load regions of practical interest, in which the arrival rate of jobs to the system is
less than 70% of the physical capacity of the system. Figure 3 also indicates that the ideal curves show
a knee at an average load of 1.0; above this point the job arrival rate exceeds the system’s capacity
and thus some jobs will necessarily be loat. We also note that lost jobs are not éxecuted; if these jobs
were to be executed, higher losses would result since these lost jobs would place additional demands

on the service capacity of the nodes.

Finally, note that we have also plotted simulation results (point values shown as filled squares)
in Figure 3 for K1 = 0.5. These simulation results were obtained without making the independence

assumptions and the Poisson approximation for A}, required by the analysis. In the simulation, the

optimized A;”a from the analytic model were used to determine the probabilities with which a trans-
ferred job from node 1 was sent to some remote node, ;. A transferred job arrived at its destination d
time units later with a new time constraint of (K1 - d). Note that the close correspondence between
the simulation and analytic results corroborates our earlier belief that the approximations introduced
were indeed justifiable. In the case that d was chosen to be a smaller value (e.g., d = 0.1, not shown

here), the simulation and analytic results were found to match even more closely.

The real time performance of the probing approach is demonstrated in figure 4 for probe limits,
Lp = 1,3,5. As expected the performance of probing approaches the ideal limit as L, increases.
Note, however, that a relatively small probing limit (L, = 5 when K1 = 0.5 (an eztremely tight
time constraint) and L, = 3 when K1 = 5.0), resuits in a real time performance extremely close to
the unachievable upper bound. Also note that increasing the probing limit beyond a relatively small
number can result at best in only a marginal performance improvement; this resulta from the fact
that the probability that a job (which is to be transferred out) is accepted by the m‘® probed node,
is given by F(K2){1 — F(K2)|™"!, and this probability decreases rapidly with increasing m. We may
conclude then that since additional probing beyond some small probe limit incurs additional overhead,

a relatively small probe limit would be sufficient in practice to implement effective real time load

sharing.

Once again, simulations were performed to validate our analysis. The results (plotted as filled
squares) in Figure 4 are shown for K1 = 0.5 and L, = 3. As with the QDLS simulations, the simulations

were performed without assuming independence among the states of the system nodes or a Poisson

~52-

"o raAPIYT

a0

2O NPT

“~uwoc

Kl : 0.5, K2 5 0.3, Wu = 1.0 Ki = 0.5, K2 = 0.4, ¥u = 1.0

0.6 0.8 - -+
i 0.5 T
0.5 F 8 '
r L
0.4 :o".,) s 4
3 - .
[g
i ;‘\ls L "" 1
0.31 o 0.31 y - .o
a . = 3
0.2 L 0.2+ \:, '- ”.' +
° QO_," g"_\;'.
: _.“‘ \\)v."
0.14 0.17 . Lo T
- P-‘
0.0K ——r + TR - + + 0. e — ‘ -+ ot .
0.0 0.2 0.4 0.8 Q.8 1.0 1.2 1.4 1.8 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.
Aversge Load Average Load
Kl « $.0, K2 = 4.8, Mu = 1.0 Kl = 5.0, K2 = 4.9, ¥u = 1.0
0.5 0.5 —
0.4 F o.«r
r
[
c
0.3+ t 0.3¢
i
°
a
0.2} 0.2¢
L
°
s
0.11 t 0.1t
0.0
9.0 0.

0.0 0.2 0.4 Q.6 08 1.0 1.2 1.4

Aversge Load Average Load

Figure 3: Performance of QDLS policy for a 20 node system with asymmetric loads

-53-

PO p

cuworc

PO wpnApn™Mm

Ll BN - BN o

Kl = 0.5, X2 = 0.3, My = 1.0

0.6+—

o
¥

0.41

o
T

o
»

.

Average Load

Kl = 5.0, X2 = 4.8,

0.5 +

e = 1.0

1.8

0.41

0.31

0.2¢

Average Load

Figure 4:

54—

20 ™m

L I - I o

PO meenpPpI™M

e 0o

Kl - 0 58, X2 = 0 4, ¥u = |
0.6t ———— . 4= = .
0.51
0.41
0.3t
)
0.2+ v’ LN -
“E
vl N
0.11) L& +
® N
. . ’—
0.0 — £ -
0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6
Average Load
\
Kl = 5.0, K2 = 4.9, Mu =1
0.6
0.5t
°-‘<>
0.34-
0.2+
0.1+ o]o
3 7
1o ? \\,?":
0.0 n Ll N !
0.0 0.2 0.4 0.6 0.8 1.0 1.2 14 {8

Aversge Load

Performance of the Probing Policy for L, = 1,3,5 under a symmetric load.

arrival rate at the upper queue. We also note that in our simulations, if a node responded positively
to a probe and its workload had increased beyond K2 within the d time units required to transfer a
job, the transferred job was simply lost, as would be the case in a real system. Again, we note that the
close correspondence between our simulation and analytic results indicate that reasonable modeling

assumptions and approximations were made in the development of our analytic model of probing.

Figure 5 indicates the dependence of the fraction of jobs lost on the time constraint, X1. Perfor-
mance results are shown for two different values of a symmetric load (an average of 0.4 and 1.2 external
arrivals/time unit per station), and a fixed transfer delay of 0.1. For A = 0.4 the curve for the [deal
case lies along the x- axis. As expected, as K1 increases, the performance of QDLS and probing with
L, = 3 approach the upper performance bound. More importantly, note that the performance with

Lp = 3 is close to the ideal limiting petformance values for even very stringent time constraints.

In summary, Figures 3 through 5 provide a quantitative basis for addressing the question of deter-
mining the appropriate level of complexity for LS algorithms. We note that a more complex approach
can at best achieve a performance level falling in the gap between our probing results and the the-
oretical optimum. For system parameters of practical interest (i.e., a system loading less than the
physical capacity of the system and time constraints on the order of the service time of a job), this
gap has been shown to be quite small. If the overhead we have not modeled is to be considered, the
small performance difference between probing and a more complex approach, which requires additional

communication and computational overhead, can only become smaller.

5 Real-Time Tasks With Bounded Waiting Time

In this section we focus on a second model for real-time jobs, one in which a job must complete
execution within a fixed time after it initial arrival into the system. A job arriving at a node can only
be serviced locally if the time it could spend in the queue pius its service requirement is less than
the deadline, otherwise it is considered lost. As stated earlier, we assume that a job initially arrives
at a node with a fixed time constraint K1, a FCFS scheduling policy at each node and a constant
network delay d associated with the job transferring procedure . Hence transferred jobs must complete

execution at the destination node in Ki — d = K2 time units.

For this system, the transfer and location policies are modified to:

e Transfer Policy : A job is to be transferred from a node i if and only if the unfinished work at
node ¢ plus the service requirement of the job exceeds its time constraint K1 and its service time
is less than K2.

¢ Location Policy : The location policy is the same as in the previous section. For QDLS, a node

probabilistically selects a “target node” and the job is transferred to this node. For probing,

-55-

0.3)‘—-—4—-—0 —— — c——— e S
F o025t L
r \
a \
c 0.0t 4
t
1
o 0.151 +
n
L 0.10} - ES
° '.
s 3

L - Ilp = 3 N N
0. e e ’

00 05 1.0 1.5 20 25 30 35 40 4.5 5.0

K1

Lambda = 1.2, K2 = K1- 0.1, Mu = 1.0

[d -~ & 4 e $ b r i
v T A4 T T) g + — +

F

r

a

c

t

i

o .

n el

Logl o~ TR e 90Ls 1

o N e L I I Tt r e e S L

s IDEAL '

t 0.1t -+
0.0 R e e +—

00 05 1.0 1.5 20 25 30 35 40 45 5.0

K1

Figure 5: Convergence of various LS approaches to Ideal for large A'l.

-56-

a node probes a fixed number of nodes in the system to determine whether any of them can
" guarantee the execution of the job, i.e if the unfinished work at the destination node plus the
service requirement of the job is less than K2. The job is transferred to the first node which

responds positively.

Note that for this system, the basis on which a job is denied service depends not only on the current
state of the node but also on the service time requirements of the job. Clearly, tasks requiring a service
time greater than K1 cannot be executed locally. Furthermore, of the tasks which cannot be processed
locally, those requiring a service time greater than K2 will not be accepted by any node. Therefore,
transferring these tasks is futile. This distinguishes the transfer policy used in this system from the
system we had considered in the previous section, in which an attempt was made to transfer each job,
which could not be executed locally, regardless of its service time. As we will see, this sufficiently
complicates the model so that obtaining a closed form expression for the unfinished work becomes a
difficult task.

In the model developed below, we again ignore the processor overhead required transfer the job and
the time delay involved in probing. Hence the actual performance realized would in fact be higher than
the computed values. The reason for this omission is that we are again interested only in the relative
performance of the system rather than its absolute performance. Also, the model does not account for
the fact that the state of the node, to which a job is transferred, may undergo a change during the
time required for the Qransfer. However, our simulations do account for any changes which may occur

in the system during the time d.

5.1 Performance Models for an Individual Node in Isolation

Figure 6 shows the model of an individual node in the system. Externally arriving jobs (with rate
Ay) comprise the lower job arrival stream. Of these jobs, only those whose deadline can be met by the
node are allowed to join the lower queue (hence all jobs in the lower queue have a time constraint equal
to K'1). The externally arriving jobs which are not accepeted into the lower queue are either lost or
transferred out to other nodes. In the QDLS scheme the upper job arrival stream (with arrival rate
A1) represents the transferred jobs, whereas in the Probing Policy the upper stream represents probe
arrivals. A probe which is accepted then, transiates into an arrival to the upper queue. Hence all jobs
in the upper queue.have a time constraint of X2. We will assume that arrivals to the lower and upper

queue follow a Poisson distribution with rate A, and A2 respectively.

The bounded waiting for jobs having a single fixed deadline has been extensively examined. For
G1/G/1 systems, Loris-Tegheim [14] obtained the generating functions of the Laplace-Steiltjes trans-
forms of the distribution of the waiting time, for cases where the random variables give rise to a rational

transform function. Cohen (5| (Model) also used transform techniques to study the equivalent prob-

-57-

——-—-—

Jobe

reyected
1
Az
Jobs
accepted —>
Ay
A"l

k2
>kl A<
Ahuw \

Figure 6: A generic node in isolation

lem for M/M/1 and M/D/1 queueing systems. Gavish et. al. [8] derived analytical expressions for
the virtual waiting time distribution and the loss incurred by the system, for an M/M/1 system with
an FCFS service discipline. Their method is simpler than the techniques used by Loris-Tegheim {14]
and Cohen [5]. We thus choose to extend the results in (8] to incorporate the second time constraint
needed in our model.

As in the previous section, following the approach of [8] [10], we can derive the time evolution
expression for the distribution of the unfinished work, F(w,t + At) in two different regions. Let B(z)
denote the PDF of the service time distribution of the externally arriving jobs. Note that the decision
of whether or not a job can be locally proccesed depends not only the current unfinished work at the
node but also on its service time requirements. Furthermore, of the jobs which cannot receive service
locally, only those with service time less than K2 may possibly be successfully executed as a result of
the LS policies. Thus the service time distribution of transferred yobs will no longer be B(z). Let G(x)
denote the PDF of the service time distribution of these transferred jobs.

In the region 0 < w < K2 we have,

Flw,t+ A1) = (1-XAt)(1 - 28 F(w + At t)
w+Al —u “ w
+A1At(1—AzAt){ (t- (’“ NeuFlw,0) Flu + 48,0 }
+ Jo B(w - u) d F(u,t)
w+A¢ 1 -G(K2-u))d,F(u,t) F(lw+ At
(())duF(u,t) F(w+ At) } o)

+ AA¢(1 - MN){ + [G(w - u)dyF(u,t)
0 w - v u,

-58-

The probability that the unfinished work in the queue at ti:ﬁe t+ At is less than w can evolve from
the state of the queue at time ¢ in the following ways. The first term on the right hand denotes the
probability of the event that no jobs arrive in the interval {t,t + At], in which case, there must have
been an amount of work Jass than w + At at time ¢t. The second term is a composite of two terms and
arises in the event that that exactly one arrival (in time At) occurs at the lower queue. In this ca.s?:
(a) if the unfinished work at time ¢t plus the work brought in exceed K1, the job is rejected and no
addtional work is added to the queue; (b) if the unfinished work at time t plus the work brought in is
less than K1, the job joins the queue and brings additional unfinished work to the queue such that the
unfinished work at ¢ + Ai ia less than w. The third term is similar to the second one, except that it
holds in the event that an arrival occurs at the upper queue and no arrival occurs at the lower queue

in the interval t + At.

In the region K2 < w < K1 we have,
Flw,t+At) = (1= MAt)(1- XA F(w+ At,t)
w+ai
1~ B(K1 - u))d,F(u,t) F{w+ At,t
nat = roan | BT = BRI AP) Flu+ a0
+ fo B(w =~ u)dyF(u,t)

v Alt(1 - M AL) F(w + At,t) (10)
Equation 10 is similar to F.quation 9. Note that since the unfinished work is w > K2 at time t + At, a

probe/job arriving at the node in the interval At, will be declined. Hence, an arrival at upper queue

adds no work to the node '

Expanding F(w + At,) with respect to the first variable and taking the limits as At — 0 we get

arg:;,z) _ aF;::.Q - -,\,/o"{a(m-u)- B(w - u)} dy F(u,¢)

~ A /o' (G(K2-u) - G(w-u)}duF(u,t) 0<w< K2

aFg:.t)_aF;::.t) - -.,\‘/:(B(Kl-u)-B(w—u)}duF(“v‘) K2<w< K1

and taking limits as ¢ — 20, we obtain the following steady state equations:

dF(w)
dw

M [0'" (B(K1 - u) = B(w ~ u)} du F(u)

+Az/ow{G(K2-u)~G(w—u)}d.,F(u) O<w< K2 (1)

—
—
L)

a

dF(w) ,\,/O"'(B(m-u)-B(w-u)}d,,r(u) K2 <w< K1

~59-~

—-'“

Equations 11 and 12 can also be directly obtained using level crossing arguments (4] (see Appendix A).

By definition the maximum unfinished work at a node must be lesa than K'1. Thus the normalization

condition becomes,

K1
[(u)du=1 (13)

So far we have not obtained an explicit expression for the PDF, G(z). In order to do so, we consider
the various job streams shown in Figure 6. A job is denied service locally if the unfinished work in
the queue plus the service time of the job exceeds K'1. Hence the probability that a job cannot be

processed locally is given by,
. K1
pre =/ (1 - B(K1 - u)]du(F(u),
0

an the rate at which jobs are rejected from the lower stream of jobs is thus,
AT =)\ P

Let J(z) be the service time distribution of the jobs in the A" stream. Then,

1 w K1
I) = 57 /0 b(w) [deF(z) du

pf,,- /:b(u)ll - F(K1 - u)|dy(F(u)

Of these jobs, only those with service time less than K2 may be transferred out (represented by the

stream A<*?) in Figure 6) . Thus,
fo b(u)[1 - F(K1 - u)|du
Jo b(w)[1 - F(K1 - u)]du

J(w)
7(K2) (14)

G(w)

Using the expression for G(w) given in 14, in Equations 11 and 12, we observe that the pdf, f(w)
is a function of an integral containing F(z) itself. This adds sufficient complexity to the equations 11

and {2 that we resort to numerical techniques to solve for F(w).

Before proceeding to compute the losses incurred in the system, we note that since we are considering
a homogenous system (in which each node experiences identical external job arrival rates), the long
term time averages of the unfinished work at each node will be the same. We therefore do not attach
a superscript 1 with the variables which denote the node. As in section 4, in the homogenous case the

system wide losses can again be easily computed by simply observing a single node in isolation.

-60-

5.2 Job Loss with no Load Sharing

With no load sharing, A2 = 0, and the problem reduces to a bounded waiting time problem for an
M/M/1 queue. Equations 11 and 12 become identical to those derived in {8]. Analytical expressions
for f(w) have been obtained in {8]. The loss rate experienced by a single node can be easily computed
from,

Losa rateNLS = A pr) (15)

5.3 Job Loss with QDLS

For a homogenous system the QDLS policy reduces to the Probing Policy with L, = 1. Therefore,
we discuss the losses incurred by a single node in the following section. We note that for a heterogenous
system, extensive numerical computations are required to solve both, equations 11 and 12 as well as

to optimize the losses. We have thus chosen to study the simpler homogenous system.

5.4 Job Loss with Probing

When Probing Policy is used, locally rejected jobs with service time greater than K2 are simply

>k2 :

lost. The loss rate at any node due to the large service tsmea (the stream A[;7 in Figure 6) is given by,

loss ”

. poo
o= [~ dua)
K2

i

K1
M(1 - B(K1) + /m b(u)(1 - F(K1 - u)]du

For the remaining jobs in the stream A" (with service time less than K2 and denoted by the stream

A<} in Figure 6), probes are sent to L, other nodes. A job is lost only if all nodes which are probed

cannot meet the deadline of the job. Thus the loss rate at a node due to congestion at other nodes is,
, K1 Ly
Apee = (AT = 2>K3) / [1~-G(K2- z)]duF(u)) .
0

The loss rate at a single node can be determined from,

Loss rate?™"™ = A% 4 2>¥2 (16)

loss”

Equations 11 and 12 can be numerically solved for a given set of parameters Ay, X;, K1, K2 and F(0*)
(the impulse function of the unfinished work at 0) (see Appendix B). However, F(0*) and A; are still

unknown. We now exploit the homogeniety of the system (see [7]) to obtain the flow constraint at a

-61-

e EEEE—— R,

single node. As described in section 4.3.2 at steady state, the flow rate at which jobs are internally

transferred out of a node must equal the flow rate at which probes are accepted. Thus,

lose

K2 . .
'\2/; G(K2 - z)d“F(u) = ’\:" - A - ’\fou (17)

Equations 13 and 17 can now be solved to determine the unknowns F(0%) and A;.

5.5 Numerical Results

In this secition we compare the losses of the probing policy for real-time tasks with bounded waiting
time with that of no LS and perfect LS for a system of 20 nodes. We assume that the service time

distribution of the jobs that arrive externally is exponentially distributed and that 4 = 1 jobs/second.

To solve for F(0*) and A; in equations 13 and 17, standard IMSL packages were used. However,
to numerically perform the integration required in equations 13 and 17, the value of the function at
discrete points are required. These values were determined from the equations 11 and 12. Note that
the left hand side of these equations can be expressed as f(w) (the pdf of the unfinished work), which
transforms the integro-differential equations to integral equations. The integral equations were solved
using the method of substitution and the integration was numerically performed using the trapezoidal
rule.

One technique to determine the value of the function f(w) at discrete points, for a given set of
F(0*) and A; would be to explicitely substiute the expression of the PDF G(z) using equation 14 in
equation 11. Thus f(w) becomes a function of the integral containing F(w). However, for incorrect
values of F(0*) and), initially provided by IMSL, the solution of f(w) (using the the method of

substitution to solve 11) fails to convergence.

A second approach (used here) would be to iteratively iteratively determine the value of G(z) and
use the given set of G(z) at each step, to solve the integral equation 11 (see Appendix B for details).
Partial success was obtained and convergence still posed a considerable problem, particularly for large
values of K1 and A;. For these vaiues, the losses due to failure in probe attempts becomes significant
and the contribution of A7¢, to the system wide loss rate is larger than that of '\z:ff In fact for these
cases simulations can be performed in a shorter amount of time. \Where possible we have provided
numerical values for the losses. For tight time constraints, e.g K1 = 1.5 convergence can be achieved
relatively fast. These results are plotted in Figure 7. For a larger time constraint, K1 = 3.0 (see Figure
8) convergence was slower. For example, L, = 5 and Ay > 1.4 convergence of our numerical technique
posed a great problem. Nevertheless, for higher values of K'l, we were able to obtain convergence for
values of Ay < 0.7 (see Figure 9). It should be pointed out that our technique thus does provides useful

results for most values of the practical range of system parameters.

FRR
Gf
Lesi

235

KL= 1.8 €2 = 1 4 9y ¢ |

w
.
w

T1CN

I\

~— Simulalien

~ NNomevical

) 02) 0.5 0.8 1.0 1.2 T4 i 6
CXTERNAL JOB RRRIVAL RRIE

Figure 7: Job loss for Probing for tasks with bounded queue time for K1 = 1.5

For L, = 0, the probing policy reduces to NLS for which analytical solutions of the function f(w)
is available in [8]. The losses computed from equation 15, for L, = O werc identical to those obtianed
in (8].

As in the previous section the “Perfect LS™ system is modelled by an M/M/20 queueing system,
with time constraint, A'I. This is identical to the system where the jobs are scheduled among the node
processors using complete state information. In the ideal case this information is known at no cost
and incur no transfer delays. Thus the performance of the “ideal” LS policy provides an unattainable
lower bound.

Figure 7 plots the fraction of jobs lost for an extremely tight time constraint, K1 = 1.5 time units,
and transfer delay of 0.1 time units. Note that since u = 1, 22.3% of the jobs have service times
greater than 1.5 and hence a minimum of 22.3 % jobs are always lost. The graph clearly shows the vast
improvement in the performance of the system, even for L, = 1. For low arrival rates, Ay < 0 8 (which i<
80% of the practical range interest of A;}, L, = 1 achieves close to ideal performance The simulations
results are plotted for L, = 1 and L, = 3. These were obtained without imposing the poisson
assumption on the arrival rates of the probes (A;). The close match between the simulation results and
the numerical results thus justifies this assumption. In the simulations we have also accounted for the

fact that the state of the system may undergo a change during the period when a node first responds

-63-

L ——

Vv 3.0, X2 = 2.9, %Y e

0.29 e
.20}
0.15¢
FCACTION
0f J38S
L0sT
0.10
0.05¢
— S\.mu\ar-b'\
— Numerical
0.00 ¢, . . N b
0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6

EXTFANAL JDB RRRIVAL Ral[.

Figure 8: Job loss for Probing for tasks with bounded queue time for K1l = 3.0

(1 : 5.0, €2 = 5.9, Wy = |

9. 20
0.15
FRACTION
of J08S 0.10
Losi
005
—_— Simolation,
— Nomerical
0.00 ¢ — -
0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 16

CXTERNAL JOB ARRIYRL RATE

Figure 9: Job loss for Probing for tasks with bounded waiting time for K1 = 6.0

-bb4-

positively to a probe and the arrival of the job.

Figure 8 shows the performance of the LS policies for A1 = 3.0. For this value of the time constraint,
only 4.5 % of the jobs are lost due to the large service times (> 3.0). Accordingly, load sharing plays
an important role in preventing losses even at low values of A;. For A{ < 0.8 we see that L, = 3 gives
rise to losses that are close to the ideal. Note that the probe limit required is larger, than for K1 = _ 5.
This is due to the fact that a larger percentage of the jobs which cannot be locally processed are now
eligible for transfer. Also since the time constraint is larger more external jobs can be accepted by a

node thus increasing its unfinished work load. Values obtained via simulations are plotted for L, = 3.

Figure 9 plots the loss incurred by the system for a much more relaxea time constraint, X1 = 6.0.
As mentioned earlier, we were able to obtain results for values of A; > 0.7. Surprisingly, we see that

with L, = 3 the losses incurred are close to ideal for A; < 0.8.

A common trend observed in all the performance curves is that the probing policy with probe limit
of one achieves a great reduction in the losses over the NLS policy for a wide range of A;. Further
improvement in the performance is obtained by using L, = 3 and we see that this value of the probe
limit reduces the losses significantly over those obtained with L, = 1, particularly for larger values of
A;. But note that this reduction is less. By comparing the graphs for L, = 3 and L, = 5 particularly
for K1 = 6.0 we note that choosing higher values of L, provides only a marginal improvement. This

observation only s2rves to strengthen our claim that relatively small probe limits are adequate.

Comparing the losses experienced by real-time system with the two classes of tasks in Figures 3, 7
and 9, we observe that the losses are significantly smaller (for equal arrival rates and comparable time
constraints) in for the system in which jobs must complete execution within the fixed time limit. This
is true since all jobs with large service times are filtered out, allowing for a larger number of shorter
jobs to be processed locally. The reverse holds for tasks with bounded queue time. A large job greatly
increases the unfinished work in the system, thus preventing all jobs which arrive during its residency
in system from executing locally. As such, the average waiting time of bounded-queueing-time jobs ,
with time contraint K'1, will be larger for than that of bounded-waiting-time jobs, with time constraint,
Kl 4+ p.

68 Conclusions

In this paper, we have examined the rclative performance of several different decentralized ap-
proaches towards load sharing in order to address the question of determining the appropriate level
of ccmplexity for load sharing algorithms in a distributed real-time environment. Queueing theoretic
models were developed to quantitatively assess the performance of two relatively simple approaches
towards load sharing as well as the bounding case of no load sharing. The “ideal” case of load sharing

with perfect information and no transfer delays was studied through simulation. The assumptions and

-65-

approximations made in our analysis were validated through simulation.

A major conclusion of this study of real-time LS approaches is complementary to that previously
established for non-reai-time systems [21,7]: simple approaches, which use a minimum amount of global
atate information and involve very simple decision mechanisms, can often achieve a performance level
close to that of a theoretically optimum real-time load sharing algorithm. A corollary then is that for
all but the tightest of time constraints (e.g., values of the time constraint, K1, less than the average
job service time), a more sophisticated approach towards real-time load sharing can often result in
only a small marginal performance improvement over the extremely simple load sharing algorithms. In
particular, it was shown that a simple probing approach using a small probe limit, performed close to

optimal over a wide range of arrival rates and for all but the most stringent time constraints.

We believe that future work in this area may be directed towards extending and generalizing the
resuits presented in this paper. In particulear, it is of interest to develop performance models for
systems in which arriving jobs may have a deadline drawn from additional deadline distributions and
again assess the appropriate level of complexity for load sharing algorithms in these cases. In would

also be of interest to consider the local scheduling of jobs to processors in these cases.

-Hou-

REFERENCES

(1] F. Baccelli, P. Boyer, G. Hebuterne, “Single-Server Queues with Impatient Customers”, Adv.
Appl. Probability, Vol. 16, pp. 887-905, 1984.

[2] J. Bannister and K. Trivedi, “Task Allocation in Fault Tolerant Distributed Systems”, Acta
Informatica, Vol. 20, pp. 261-281, 1983.

(3] D. Bourne and M. Fox, “Autonomous Manufacturing: Automating the Job Shop”, /[EEE Com-
puter, Vol. 17, No. 9, pp 76-89, Sept. 1984.

(4] P. Brill and M. Posner, “Level Crossing in Point Processes Applied to Queues: the Single Server
Case”, Operations Research, Vol. 25, No. 6, pp. 662-674, July-Aug. 1977.

[5] J.W Cohen, “Single Server Queue with Uniformly Bounded Virtual Waiting Time,” J. Appl.
Prob. Vol. 3, pp. 265-284, 1969.

(6] B. Doshi and H. Heffes, “Overload Performance of Several Processor Queueing Disciplines for the
M/M/1 Queue”, IEEE Trans. Communications, Vol. COM-34, No. 6, pp. 538-546, June 1986.

{7) D. Eager, E. Lazowska, and J. Zahorjan, “Dynamic Sharing in Homogenous Distributed Systems”,
IEEE Trans. of Software Eng., Vol. SE-12, No. 5, pp. 662-675, May 1986.

(8] Bezalel Gavish, Paul Schweitzer, “The Markovian Queue with Bounded Waiting Time”, Man-
agement Science, Vol. 23, No. 12, pp. 1349-1357, August 1977

[{9] V. Hunt and G. Kloster, “The FAA’s Advanced Automation System: Strategies for Future Air
Traffic Control Systems”, JEEE Computer, Vol. 20, No. 2, pp. 19-33, Feb. 1987.

[10] L. Kleinrock, Queueing Systems: Volume 1: Theory, Wiley Interscience, New York, 1975.

{11} J.F.Kuroae, S.Singh,“A Distributed Algorithm for Optimum Static Load Balancing in Distributed
Computer Systems”, I[EEE 1986 Infocom Conference Proceedings, pp. 458-4€8, (Miami, April
1986). '

(12] D. W. Leinbaum and M. Yamini, “Guaranteed Response in a l{ard Real-Time Environment”,

IEEE Trans. on Software Eng. , Vol. SE-6, No. 1, pp. (Jan. 1980).

[13} C. Locke, H. Tokuda and E. Jensen, “A Time-Driven Scheduling Model for Real-Time Operating
Systems”, CMU Tech. Report (Archons Technical Report) May 1985.

[14] J. Loris-Teghem, “The Waiting Time Distribution in a Generalized Queueing System with Uni-
formly Bounded Sojourn Times,” J. Appl. Prob. Vol. 9, pp. 642-649, 1972,

67~

[15] P. McGregor and R. Boorstyn, “Optimal Load Sharing in a Computer Network”, Proc. [CC '75,
pp. 41-14 - 41-19, 1975.

[16] P. Ma, E. Lee and M. Tsuchiys, “A Task Allocation Model for Distributed Computing Systems”,
IEEE Trans. Computers, Vol. C-31, No. 1, pp. 41-48, Jan. 1982.

[17) A. Mok, “Fundamental Design Problems of Distributed Systems for the Hard Real-Time Envi-
ronment”, MIT Tech. Report MIT/LCS/TR-297, May 1983.

(18] R. Muntz and E. G. Coffman, “Preemptive Scheduling of Real-Time Tasks on Multiprocessor
Systems”, JACM, Vol. 17, No. 2, April 1970.

(19] E. DeSouza e Silva and M. Gerla, “Load Balancing in Distributed Systems with Multiple Classes
and Site Constraints™, Performance '84, pp. 17-33, 1984.

[20] J. Stankovic, “A Perspective on Distributed Computing”, IEEE Trans. Computers, Vol. C-33,
No. 12, pp. 1102-1115, Dec., 1984.

[21] J. Stankovic, “Simulations of Three Adaptive, Decentralized Controlled Job Scheduling Algo-
rithms”, Computer Networks, Vol. 8, pp. 199-217, Aug. 1984.

[22] J. Stanlovic, K. Ramamritham, S. Cheng, “Evaluation of a Flexible Task Scheduling Algorithm
for Distributed Hard Real-Time Systems”, IEEE Trans. Computers, Vol. C-34, No. 12, pp. 1130-
1144, Dec., 1985.

(23] H. Steusloff, “Advanced Real Time Languages for Distributed Industrial Process Control™, /EEE
Computer, Vol. 17, No. 2, pp. 48-59, Feb., 1984.

[24] A. Tantawi and D. Towsley, “Optimal Static Load Balancing in Distributed Computer Systems”,
Journal of ACM,, Vol. 32, No. 2, pp 445-465, April 1985.

[25] K.J. Lee and D. Towsley, “A Comparison of Priority-Based Decentralized Load Balancing Poh-
cies”, Performance '86, pp. 70-78, May 1986.

[26] W. Zhao and K. Ramamritham, “Distributed Scheduling Using Bidding and Focused Address-
ing”, IEEE Real-Time Symposium, Dec. 1985.

Appendix A : Derivation of Equation 2, 11, 12 Using Level Crossing [4] (6]

-68-

K2

LMINTSHED

wonk

0.0

Figure 10: Level Crossing in the region w < K2

As shown in figure 10, if we plot the unfinished work in the generic queue in figure 2 as a function
of time, we obtain a “sawtooth” line, where the vertical jumps represent increments of work brought
to the queue by an arriving customer and the slope of the decreasing sections of the line is -1. The
point at which an increasing or decreasing section of the sawtooth line intersects a horizontal line of

height w is referred to as an “upcrossing” or “downcrossing” at w, respectively.

A major result of level crossing states that the density function, f(w), of the “virtual waiting time”
(i.e, the total unfinished work in the queueing system) is equal to the rate st which downcrossings cross
a line of constant height, w, and that for ergodic systems, the rate of downcrossings equals the rate of
upcrossings through this line (4] [6].

Tasks with Bounded Queueing Time:

In order to determine f(w) in the region w < K2, we note that an upcrossing occurs at w when
an arrival to the generic queue finds some amount, u (u < w), of unfinished work in the queue upon
1ts arrival and itseli joins the queue and brings in an amount of work greater than w — u. If B(z) is
the PDF of the service time demands of an arriving customer, then the probability that the amount
of work brought in by an atriving customer is greater than w — u is simply 1 — B(w - u), and the rate

of upcrossings at w in our generic queue is given by
w
rate of upcrossings = (A, + Ag)/ (1 - B(w - u))[{u)du
0

Equating the rate of upcrossings to f(w), the rate of down crossings immediately gives equation 1 in

the region w < K2.

~-69-

J—-——

In order to determine f(w) in the region K2 < w < K1, we separately consider upcrossings due to
arrivals at the lower and upper queues in figure 2. Following an identical argument as above, the rate

of upcrossings at w due to arrivais at the lower queue is given by:
w
rate of upcrossings due to arrivals at lower queue = Ay / (1 - B(w - u))f(u)du
0

Note that a job arriving at the upper queue will only join the queue if it finds an amount of unfinished

work, u, less than K2. The rate of upcrossings due to arrivals at the upper queue is thus given by:

K2

rate of upcrossings due to arrivals at upper queue = /\g/ (1 - B(w — u))f(u)du
0

Equating the rate of upcrossings and f(w), the rate of down crossings at w, immediately yields

equation 2.
Tasks with Bounded Walting Time:

Following the above arguments, for 0 < w < K2, a job arriving at the lower queue will give rise to
an upcrossing from some level u (< w), iff the amount of work brought in by the job exceeds w - u, but
is less K1 — u (otherwise the job's deadline cannot be met). Since B(z) is the PDF of jobs arriving at
the lower queue, the probability that an upcrossing occurs is, [B(K1 - u) — B(w - u)|f(u)du. Similarly,
for a job arriving in the upper queue the probsbility that an upcrossing occurs from the level u is,

[G(K2 - u) = G(w — u)]f(u)du. Therefore, the total rate of upcrossing is given by,
rate of upcrossings due to an arrival = /\1/ {B(K1-u)- B(w - u)}d,F(u)
0
+ A¢/ (G(K2 - u) - G(w — u)} duF(u)
0

Equating the rate of down crossing with that of upcrossing yeilds Equation 11.

In the second region, K2 < w < K1, an uprcossing from any level u (< w) will occur only when a

job arrives at the lower queue. Hence,
w
rate of upcrossings due to an arrival = Ay / {B(K1~u)~- B(w-u)}d,F(u)
0
Equation 12 is obtained by equating the rate of upcrossing and downcrossing.

Appendix B : Solution of Equation 3 and 11 and 12

-70-

Tasks with Bounded Queueing Time:

For the purpose of clarity let Fy(w) denote the function F(w) in the region 0 < w < K2 and F3(w)

denote the function F(w) in the region X2 < w < K'1. Consider equation 2 in the region 0 < w < K2:

-8 = ([Bl = wduFi(w) - Fi)

dw

Define f)(w) = "—F:;S‘—'). Let F| denote the Laplace Transform of fi(w). Taking the Laplace transform

and rearranging the terms we get {10],

8F1(0+)
s+ (AL +Az)(B(s) - 1)

Fi(s) = (18)

Assuming service times are exponentially distributed, we have B*(s) = u/(u + ¢). Thus,

sF1(0+)

Al = T W -1

On taking the inverse Laplace transform, we obtain an expression for fj(w). Then Fi(w) is simply

given by:

Fi(w) = fow [1(u)du

The solution to equation 2 in the region X2 < w < K1 is obtained in a similar manner. We can
tewrite the expression as:

_dF;:‘(”w). = (A1 + A1) {/;Kz B(w - u)dyFi(u) - FI(K2)}

X { [K'; B(w — u)dydFi(u) - /K: d,.F,(u)}

Define g(w) = U(w — k2)f1(w), where f3(w) is the density function in the region defined by, K2 <
w < K1 and U(w ~ K2) is a step function. Let G°(s) be the Laplace transfc;rm of g(w). Then for
B*(s) = p/(u + 8) we get,
(A + Ag)CeuK-0K2

s+u- A

G'(s) =

where

C = F(0+)C(A|+4\1)K2

-71-

On inverting the above transform we obtain an expression for f2(w), in the region w > k2. The desired

result for F;(w) can now be easily derived since
K2 w
Fy(w) = / f1(u)du + / f2(u)du
0 K2

Note that although we have derived expressions for an exponentially distributed service time, the

above technique can be used to solve a general class of service time distribution.
Tasks with Bounded Waiting Time:

Separating the value of F(w) at zero (denoted by F(0%)), Equations 11 and 12 can be rewritten as:

f(@) = M{B(K)- B(u)} F(0*) + A1 (G(K2) - G(w)} F(0°)

+ A /0: (B(K1 - u) - B(w — u)} f(u)du

+ A1) /0:' (G(K2-u) - G(w-u)} f(u)dy 0< w < K2
f(w) = M {B(K1)- B(w)} F(0%)

+ /"{B(m —u)-B(w-u)}duF(s) K2<w< K1
o+

Similarly, equation 13 takes the form,

F(0*) (1 + /o fl f(u)du) =1

Hence, with the knowledge of the values of the function in the interval (0, A1, the two unknown

F(0%) & A3 can be computed from the equations 13 and 17.

The explicit form of the function G(z) was not used due to the poor convergence obtained while
solving for F(0*) & A;. A second level of iterations was introduced to compute G(z). Our algorithm

was as follows:
1. Initialise G(z) = B(z) 0<z< Kl
2. WHILE NOT DONE

o For the given value of G(z), compute the value of F(z) for z € [0, K'1], using the method of

subsitution to solve the integral equations 11 and 12.
¢ Determine F(0*) & A (using IMSL routines) by solving equations 13 and 17.

o Compute the fraction of jobs loust using equation 16.

-72-

o Compute the new G(z) from equation 14.

3. DONE = TRUE when three successive iterations give losses within 0.1% of each other.

-73-

APPENDIX B

74

AUGMENTED CHAIN ANALYSIS OF MARKOV AND SEMI-MARKOV PROCESSES !

STEPHEN G. STRICKLAND and CHRISTOS G. CASSANDRAS
Department of Electrical and Computer Engineering
University of Massachusetts, Amherst, MA 01003

ABSTRACT

We present a new method for estimating performance sensitivities, with respect to parameters
of interest, of Markov and (some) semi-Markov processes from information contained in a
single nominal sample realisation. Given a nominal parameter value, we use a perturbation
of the parameter to define a perturbed system. We then construct what we call an augmented
chain which in effect allows us to construct perturbed realisations from nominal ones, and
hence compute sensitivities of any quantities measurable on these realisations. We show that
the “observability® problem encountered in our earlier work can be overcome through an
appropriate transformation of the augmented chain and present some experimental results.

1 INTRODUCTION

In performance optimization problems involving discrete event dynamic systems, analytical expressions
of the performance measure (in terms of controllable parameters) generally do not exist. Gradient-based
optimization methods typically employed in such cases require the sensitivity (or partial derivative) of
the performance with respect to the parameter{s) over which the optimisation is being performed. Tra-
ditionally, one resorts to simulation and uses a finite difference estimator to compute these sensitivities;
this requires two simulation runs for each parameter. Recently, several new approaches have been de-
veloped, which extract information from an observed nominal state trajectory of the system in question,
and directly estimate the sensitivity of the performance measure with respect to a parameter of inter-
est. These sample path based techniques include the Likelihood -Ratio Method (8],[3] and Perturbation
Analysis [4],[S]-{7]. In general, these methods realise considerable computational savings as compared
to the two-simulation approach since they require only s single simulation run. More importantly, since
they involve only obeerved data, they may also be used in on-line or real-time control schemes.

This paper considers new sample path based method which has significant advantages in many
situations. One advantage of this approach is that nominal system parameters need not be known. Fur-
ther, the method can be applied to discrete (integer-valued) parameters (e.g. buffer capacities, routing
thresholds, customer class sizes) for which the performance measures are necessarily discontinuous.

The method presumes the existence of two Markov chains whose structure is known. We assuine
both represent the same underlying system of interest, but differ in the value of some parameter; thus,
we refer to them as the nominal and perturbed chains. Observation of a sample realisation of the nominal
system allows direct measurement of its sample performance. If we can at the same time estimate the
sample performance for a perturbed realisation, then we can immediately compute a finite difference
sensitivity estimate. We accomplish this by using the event-driven nature of the underlying system to
construct an asgmented chain related to the nominal and perturbed chains in the following two ways:
(1) The augmented chain is stochastically similar to the perturbed chain in that the stationary state
probabilities of the perturbed chain are obtainable as the probabilities of appropriately defined aggregate
states in the augmented chain. (2) The augmented chain is observable with respect to the nominal chain
in that we can estimate the augmented chain state probabilities using information contained in a single
observed nominal realisation.

In previous work [1] we developed a method for constructing an augmented chain which was al-
ways stochastically similar to both the nominal and the perturbed chains; however, it was not always
observable with respect to the nominal chain. We proposed a solution to this problem which involved
generating additional “artificial® events to supplement those observed in the nominal sample path. This
requires, however, that we know or estimate the rate parameter associated with these events. In this
paper, using 2 more direct construction, we formalize the notion of observability and show that under
tome gencral conditions ar observable augmented chain can always be constructed through a transfor-
mation of the initial augmented chain. We consider extensions to semi-Markov processes and present
soime experimental results.

!This work is supported in part by the National Science Foundation under grant ECS-8504676 and by the Rome Air
Development Center under contract F302602-81-C-0169

75

e

2 DIRECT SYNTHESIS OF AUGMENTED CHAINS

In this section we extend our previous results [1] by imposing an event structure on the Markov chains
under consideration. This allows us to obtain an augmented chain directly, as well as accomodate a
more general class of Markov chains. In addition, it results in a more compact representation.
We assume that the Markov chains considered meet the following conditions:
(A1) There is a finite set of events; each transition defined in a chain is associated with a unique event.
Moreover, all transitions associated with a given event have the same rate (i.e. the transition rate
is a function of the event type alone).

(A2) For each state, there is at most one outgoing transition corresponding to each event.

Remark : We can accomodate state dependent transition rates by expanding the number of event types.

2.1 Definitions and Notation

Consider a discrete event dynamic system, represented by (S, E, D}, where S is a state space, £ is a

set of events which cause all possible state transitions, and D is a transition function, D: S x £ — §.
Let E/(s) denote the set of events which can occur when the system is in state s; we will refer to

this as the feassble sct of events at state s. Then, given s € S and some ¢ € E, we define D(s,¢) as

D(s,¢) = destination state when ¢ occurs in state s if ¢ € E/(s)
=10 if ¢ & E (s)

If an event ¢ & E'(s) occurs at state s, the event is effectively ignored and the state is unchanged.
This is to be distinguished from the case of a “self-loop” transition, where D(s,¢) = s for some event
¢ € E/(s). Note that D(s,e) also defines a destination matriz describing the system.

A Markov chain a is obtained from the discrete event system definition above by requiring that the
events of each type constitute Poisson processes, and by providing an intensity function F : E — R,
characterizing each of these processes. Thus, we may write a = {S, E, D, F}.

Note that we can easily obtain the infinitesimal generator of a, Q, from D and F as

ZJ (D(u,c),a,-)F(e) 5 ¥ o5
Wit ={ S qtamn) s 0

kyti

where s;,3; € S, and we effectively sum the rates of all possible transitions from s; to s; caused by
events in E/(s;) (6(-,-) is the indicator function: §(z,y) = 1 if = = y and 0 otherwise). :

2.2 Construction and Properties of Reduced Augmented Chains

Given the preceding notation, consider two Markov chains a; = (S, £y, Dy, F,} and a3 = (S, E3, D3, F3}.
For convenience, we make the following additional assumption:

(AS) a; and a3 are finite, irreducible, and ergodic chains; hence, they have unique stationary state
probability vectors x;, x4, determined by Q;x; = 0, ¢ = 1, 2.

We then define the Reduced Augmented Chain (RAC) (the term “reduced” is used to distinguish this
augmented chain from the maximal augmented chaiu (MAC) defined in {1]) correspouding to x, and
a3, as a Markov chain

ap = {Sr, Er, Dp, Fr}

where

SR=$|X52
Epn=E,UE,

76

and Dp is defined for each element (s;, s5) € Sr with &; € S; and s; € S3 by
[(Du(sse)s Dalosne)) it Dyfoi,e) # 0, Dafsjue) #0
Dy(s:,¢), a,-) if Dy(si,¢) #0, Da(sj,¢) =0

(u,Dg(c,-,e)) if Dy(8i,¢) =0, D3(35,¢} #0
0o if Dy(s¢,¢) =0, D3(s5,¢) =0

Dp|(s:,85),¢] = | @)

\

and finally, Fp is given by .
Fi(e) ifee By .

Fa(e) = { Rl fc€EycgE, @)
It is shown in [2] that this definition results in 2 RAC identical to that obtained in our earlier work
{1]. A key feature of ap is that it generally contains transient states, which can be removed since we
are interested in the stationary state probabilities. A simple algorithm for constructing directly the
irreducible, ergodic sub-chain of the RAC (i.e. the RAC with transient states renioved), given an initial
state, is also given in [2}. Hereafter, when referring to the RAC, we will assume that all transient states
have been removed; thus, ap refers to the irreducible set of states containing a given initial state.

An example of a RAC construction is shown in Figure 1, where we show the RAC which results
from a nominal chain representing a homogeneous M/M/1/1 queueing system, with transition rates A
(for arrival events, a) and u (for departure events, d), and a perturbed chain representing an M/M/1/2
system with the same transition rates. The elements S, E, D, and F of our representation are shown

along with the corresponding state diagrams. Note that the construction includes two transient states,
which are ignored.

A A $,=(% 5,). Ey={a. d}, F, @)=, F,(d)=t
HOBOD» [+°]
m D=

51 %9

2 A 2 S;=(s0. 5. 52}, Ey={a,d}, KX, KA
% O

i
2 5

Sg={%0. Sa » & 1. §2 }s B ={a, d}, Fp@)=A, Fg(d)=u
510 '

- 22 %0
%2 %o
22 1

o

Figure 1: RAC For The M/M/1/1, M/M/1/2 System Pair

In order to provide a more compact representation for Dp, let us define

it = {29 42z ;

which allows us to rewrite (2) as

Dal(sivs;).el = (Dh(si), D3 (s5.¢)) ()

77

2.2.1 The Stochastic Similarity Property

As previously mentioned, our motivation for constructing ap is that it contains information about the
joint behavior of a; and a3. In fact, if Sp is appropriately partitioned, ag can be transformed into
a Markov chain with the same stationary state probability vector as either a; or ;. We refer to this
property as stochastic similarity.

Definition : Let a = {S, E, D, F} and ag = {So, Eo, Do, Fo} be two Markov chains, with stationary
state probability vectors x and xg respectively, and dim(Sg)=N. The Markov chain a is said to be
stochastically similar to ag with respect to P iff there exists a partition P = {p;}im1....~v of S such that

x(p;) = xo(s;) forall 5; € S,

Clearly, the partition P results in a Markov chain ap. Letting Qp and Qg denote the infinitesimal
generators of ap and ao, an alternative definition is to require that Qp = Q,.

Remark : Stochastic similarity implies that the transitions between the partition sets p; € P (as
applied to Sq) constitute a realisation of ag. Thus we can explicitly extract a realisation of ay from the
observed realization of a by simply ignoring all transitions internal to any p;.

Given the definition of stochastic similarity above, we now wish to establish the fact that the RAC,
ap, defined above, is indeed stochastically similar to both a; and a;. Thus, we will show that elements
of Sp can be aggregated in ways that allow us to express the stationary state probabilities of a; and
a3 in terms of such “aggregate” or “composite” states. The following lemma identifies the fundamental
property of ap which makes this possible.

Lemma 1: Let a = (S, E, D, F} and ag = {So, Eo, Do, Fo} be two Markov chains, with infinitesimnal
generators Q and Qo respectively, and dim(So)=N. If there exists a partition of S given by

P={pi t=1,...,N}

such that foralla€ p; and 5 #7+,
d_ Qla,8) = Qo(si, s;))
bEp;
where 3;,3; € So, then a is stochastically similar to ag with respect to P.
Proof : (see [2])
We shall now use this lemma to construct appropriate partitions of the RAC defined above, and
establish stochastic similarity properties with a; and a3. First, as in our earlier work {1], we define the
following partitions of ag:

P = {r.-:(s.,.a,')er.* iff sp = 3; Esha,-GSz} (8)
.Pc = {C‘ H (’k' 8") €c; iff 3y = & € Sz, s € Sl} (9)

The definition of Sp as the cartesian product S; x Sz gives it a rectangular structure with the “rows”
associated with elements of S; and the “columns” associated with the elements of S;. The partitions
above simply formalise this fact. Thus, we will refer to r; € P, as the “i*" row” of ap and ¢; € P. as
the “** column” of ag.

In the following result, we show that the partitions P, and P. allow us to establish that ap is
stochastically similar to a; and a3, respectively.

Theorem 1: Let Sp be partitioned through P, and P.. Then, ap is stochastically similar to o,
with respect to P,, and to a3 with respft to P, i.e.

xp(r:i} = =(s;) foralls; €5, (10)
*r(cy) x2(s;) forall s; € S, (11)

f

Proof : (using Lemma 1; see [2]).

The key implication is that a single realisation of ap provides the same information as two distinct
realizations, one of a; and the other of a;. Thus, we can use such a realisation to obtain information
regarding the behavior of both a; and a3. Suppose that a, represents a Markov chain model of a
nominal system, and let a; be identical to a; except for some specified parameter perturbation. Thus,
a3z corresponds to a perturbed system. In this context, a realization of ap provides sufficent information

to estimate performance sensitivities of the nominal system with respect to the perturbed parameter.
Neither a; nor ay need be observed.

78

'2.2.2 The Observability Property

As already mentioned, the stochastic similarity property of the RAC, ap, presented in Theorem 1,
is of interest if sample paths of ar can be conveniently constructed, given sample paths of a; (the
directly observable Markov chain). This is indeed poesible under an observability condition, which we
shall formalise in this section.

Consider a Markov chain ag = {Sa, B, Do, Fy} and let 39 € So be a specified snitial state. Then,
for any event sequence e = {ca,¢1,...}, with ¢; € By for all ¢, there is a corresponding state sequence
« = {30,81,...}, with 8; € Sy for all i. Thus, (39,¢) describes a stochastic realisation of ag in terms
of the sequence of states visited. Note that s;,¢ = 1,2,... represents the state of the system just after
event ¢; occurs. In case ¢; € E/(s), we have s; = 5;_; and no actual transition takes place.

Now suppose we consider a second Markov chain a = {S, E, D, F}, and specify an initial state
to € S. Civen the same event sequence ¢, we may generate a state sequence ¢ = {to,¢;,...} with ¢, € S
for all {. We define the notion of observability in terms of the relationship between Ef(s;), the feasible
set of events causing transitions when oo is in state 3;, and E/(t;), the corresponding feasible set of
events for ¢; € S.

Definition : Let ag = {So, Eo, Do, Fo} and @ = (S, E, D, F} be two Markov chains with specified
initial states s, € Sy and to € S respectively. Let ¢ = {¢;}, ¢ = 0,1,... be any event sequence with
¢; € By for all ¢, and ¢ = {s;}, t = {¢;} the corresponding state sequences for ag, a. Then,

1. An event ¢ € E (or the corresponding state transition from ¢; to ;) is said to be observable with
respect to ag iff
c€ F/(t;) = ce El(s;) and F(e) = Fo(e) (12)

forany:=0,1,...

2. The chain a is said to be observable with respect to ao iff e € E/ (¢;) is observable foralli =0, 1,...
and all event sequences ¢

Remark : If a is stochastically similar to ag with respect to some partition P, the definition is
simplified by virtue of the fact that P constrains the sequence ¢ in terms of s. Thus, if @ = ap, when
ag is in state s; € So, ap is in state (s;,3;) € Sp (for some z;) by construction. This is true for all
event sequences ¢ used to generate 4. Therefore, in view of (2) and (3), the observability condition for
ap with respect to the nominal chain a; becomes -

E'|(s:,3;)] € E' () for all s; € Sy, (s:,85) € S;‘vg (13)

or equivalently,
Dr|(s:,37),¢] #0 = Dy(si,¢) #0 forall c € Ep (14)

In the example of Figure 1, if the M/M/1/1 chain is observed, then RAC state so; has an unob-
servable transition of rate u to state soq, since the nominal state corresponding to sa0 (s0 € So) has no
feasible u transition (no departure can occur when the system is empty). Note that if the M/M/1/2
chain were observed, then all events/transitions would be observable. .

The definition above specifies sufficient conditions for constructing a realization of a from an ob-
served realisation of ag. The feasible set of a state s € S, along with F(e) for all ¢ € E/(s), define
the parameter of the holding time distribution (which is necessarily exponential) of the state, as well
as the distribution of the type of the next event. Thus we can view obeervability as a condition which
guarantees that the sequence of holding times and events which are observed in the realisation of a,
have the correct distributions to be used in constructing a realization of « (see [2}).

3 FULLY OBSERVABLE REDUCED AUGMENTED CHAINS

As stated previously, our goal is the construction of a RAC, ap, which is both observable with respect to
a; and stochastically similar to a;. While ap, as defined in Section 2.2, is always stochastically similar
to a-, it will often not be observable with respect to a; due to the constraining nature of the observability
conditions. In this section, we show that, subject to some general conditions, we can transfornm ap to
a new RAC, afy, which is fully observable with respect to a,, and retains a modified form < stoclastic
similarity, which we shall call £-ssmdarity. In brief, we decompose the states of the RAC in a way that
allows us to both eliminate the unobservable transitions and express the perturbed state probabilities
in terms of aggregate states created by the decomposition.

79

3.1 ¢-Similarity

We begin by extending the definition of stochastic similarity given in section 2.2.1.

Definition : Let a = (S, E, D, F} and ag = {So, £y, Do, Fo}; be two Markov chains with stationary
state probability vectors x and xo respectively, and dim(So)=N. The Markov chain « is said to be ¢-
similar to ao with respect to V = {V;}, .~ iff there exists a set V C S and a constant £ € (0, 1] euch
that:

x(Vi) = €xo(s:) for all 5; € So

The next Lemma is a generalisation of Lemma 1, and establishes conditions under which two chains
are {-simidar . In what follows, given a state space S, s € S, and A C S, we shall use Q(s, A) to denote
2 ea Qs,t). We shall also denote the complement of A with respect to S by A.

Lemma 2: Let a = {S, E, D, F} and ag = {Sq, Eo, Do, Fo} be two Markov chains with infinitesimal
generators Q and Qg respectively, and dim(Sg)=N. Let P be a partition of S such that

P=VuwW={Vi}, . ~u{Wli. .~
and the following conditions hold for all: =1, ..., N:

(C1) Q(s,W;) = Q(s,V;), for all s € W;,
(C2) Q(s,Vi) + Q(s,W;) = Qulsk,s:), forall s€ Vi, k# ¢
(C3) W; is not an absorbing aggregate state

Then, « is £-similar to ag with respect to V, Le.
(Vi) = Exalsi)

and £ is given by
€=xp(V)=1-xp(W)

Proof : (by flow balancing around each V; and W;; see [2]).

Remark : Lemma 1 may be viewed as a special case of Lemma 2, where V = § and V; = p,.
In this case £ = 1 and condition (C2) reduces to (7). Note that no assumptions are made regarding
transitions originating in each W;, except that any terminal states lying outside W; must belong to the
corresponding V;.

In what follows, we will decompose Sp, the state space of ap defined in section 2.2, so as to define
a partition satisfying the conditions of Lemma 2, and also where all unobservable transitions originate
within a W; eet. Using this partition, we define a transformation of ap yielding a new RAC, o/, which
is observable with respect to a; (nominal chain) and £-similar to a3 (perturbed chain).

3.2 Decomposing the RAC: Active and Passive States

Without loss of generality, we assume that «; is the nominal chain (recall that we denote the nominal
and perturbed chairs, and the RAC by ay, a3, ap, resnectively). Let U; denote the set of RAC states in
the composite state ¢; (equivalently, the ¢** column) defined in (9) which emit unobservable transitions,
and let R; =¢; - V.

Let us attach a binary indicator to the state of ap which takes on two values: active and passive and
is defined as follows. We assumie the state is initially active at the start of the sample path. Entering any
Ui while the state is active causes a switch to the passive state. The indicator remains passive until the
system enters the R; corresponding to the U; which initiated the passive state. At this point it returns
to the active state. Note that this indicator has no effect on the evolution of the original state vector.
Further, entering any U; while in the passive state has no effect on the binary indicator. -

The RAC states s € Sp are thus decomposed into distinct component states {sai 8o 82,000
defined by s, = s, given the system is in the active state, and s:, = s, given the system is in the passive
state as a result of entering U,.

Based on this decomposition, let us define an aggregate state W, as the set of all (*" passive
components of states s € Sy, i.e.

W, = U $ fori=1,2,...

80

active Paesive aetive .usuc .u.-u ve

s am—— e mem————
T RRRRuR; Ur ooy RRRR; . o ViV, ViViVyw, (ARTRTS

Figure 2: The RAC State ijectory Decomposition

Ve v w.uw,
Active stetes) Passive siates)

Figure 3: Active and Passive State Space Decomposition

In effect, the RAC enters W; when it enters U; while in the active state, and remains in W; until the next
visi¢t to R;. Thus, the RAC state trajectory can be viewed as a sequence of active segments connected
by visits to a single W; (Figure 2). Let us also use V; to denote the set of all active components of states
s € R;, and let V = U;V;. This defines the most important decomposition of Sp—into active and passive
states (see Figure 3)—as

Sn=Us. u Us,, UV" U UW.‘=VUW (15)

The next result establishes the fact that this decomposition of Sp satisfies the conditions of Lemma
2, and, therefore, allows ag to be £-similar to az with respect to the set of active states, V.

Lemma $: Given the partition VUW defined by (15), if V; # 0 for all ¢, then ap is £-similar to a3
with respect to V, ie.
- wr(V;) = €xz(s:), with € = xp(V) =1~ xp(W)

Proof : (using I :mma 2; see [2]).

Remark : Lemm. 3 establishes £-ssmidarity between ap and a; with respect to the set of active
states V. The portions of the nominal trajectory during which the system occupies active states (elements
of V) effectively constitute a realisation of the perturbed eystem (this is similar to the “cut-and-paste”
idea of [7]). Thus we use observations made during these portions to estimate the perturbed state
probabilities. The fraction of the total observation interval which these portions constitute is given by
€, where 0 < £ < 1. For the fastest possible convergence of our estimates, we clearly waut € as close to
1 as possible,

Note that, by construction, all unobservabls transitions originate in W (if none exist, then W = §
and £ = 1). Thus, our next objective is to transform ap 8o as wo eliminate all unobservable transitions
without violating (C1)-(C3).

3.3 The Observability Transformation

In this section we present our main result which states that under certain general conditions, there
exists a transformation of ap yielding a new RAC, a, which is both observable with respect to oy and
£-similar to aj.

We begin by defining a state transition transformation for a Markov chain a = (S, E, D, F}. Let ¢
denote the set of all state transitions defined in a, i.c.

® = ({(s,¢),¢]: 5,t€S, c€E, D(s,c)=t, Fle}>0}
Then, a statc traxsition transformation is defined to be a mapping:
T:@—~(SxS)ue

where the mapping to # corresponds to removal of a transition [{s,¢),¢]. For simplicity, we shall limit
ourselves Lo transforming trausitions caused by a single eveut between each pair of states, and not
affecting the transition rate of this event. Thus, we denote this transforination by

T(s,t) = (u,u} or T(s,t) =8

81

e

L e —

where (u,v) € (S x S), and the associated event is implied.

Now, we secek a transformation T which, when applied to all state transitions of ap, generates a
RAC observable with respect to a; and also £-similar to 3.

Theorem 2: Let ®p be the set of state transitions in ap, and T* a transformation applied to
(s,t) € ®g such that

T*(s,t) = ¢ if (s,¢) is unobservable
= (s,v), ve(R;NV;) if s€eW,t€r; t,j=1,.. N

If V; % 8 for all ¢, the resulting RAC, af;, is observable with respect to oy and {-similar to a3 with
respect to V.

Proof : (see [2]).

In Figure 4 we show the application of this transformation to the example of Figure 1.

-
o’
.

-
Canean”

Figure 4: Obscrvability Transformation of the M/M/1/1, M/M/1/2 RAC

Remark : Note that all but one of the conditions required are met either directly or indirectly by
the construction of ap. The only “real” condition is that V; # 0, for all <. This is equivalent to requiring
that for each state s € Sz, there exist at least onc state t € S; such that E/(s) C E/(¢). Also, note that
simply removing the dnobservable transitions is generally not sufficient since (as in our example—see
Figure 4) it may make one or more W; sets absorbing.

4 Extension To Semi-Markov Processes

We have investigated extensions of our method to semi-Markov processes via two directions. The first
utiliges a discrete-time Markov chain imbedded in a continuous-time semi-Markov process. This only
requires extending our existing methodology to discrete-time Markov chains. The second approach
involves applying our continuous-time approach directly, simply relaxing the requirement that the event
streams constitute Poisson processes. For certain restricted classes of semi-Markov processes, we obtain
results equivalent to the pure Markovian case.

4.1 Imbedded RACs

The imbedded Markov chain approach is well known. We need only extend our augmented chain method
to discrete-time Markov chains. While there are some complications due to the differing normalization
conditions, this can be done. In Section § we apply the imbedded chain approach to the M/GI/1/K
queueing system. We note in passing that the utility of the imbedded chain approach rests on the
ability to relate characteristics of the imbedded chain to those of the continuous-time chain in which
it is imbedded. In the case of the M/GI/1/K system, we are fortunate in that the stationary state
probabilities of the (imbedded) discrete-time and continuous-time systems are identical. Tlis is generally
not the case.

-

4.2 Relaxation of the Markovian Assumption

In this approach, which we apply to the GI/M/1/K system in Section S, we simply relax the Markovian
requirement for one or more of the event processes (allowing them to be arbitrarily distributed). In gome
cases (e.g. the G1/M/1/K system) the efficacy of the method is unaffected by this relaxation. While
this represents ougoing research, the basic idea can be outlined as follows.

Cousider the problem of constructing a perturbed realization in a simulation euvironment. Given
an initial state, our task can be viewed as one of constructing a “stochastically correct™ sequence of state

82

holding-times (rq, ry,...), with associated terminating events (ca,¢1,.-.). Given a model of the system,
this event sequence uniquely determines the state sequence. At each iteration ¢, we use ¢; to determine
the next state, aud repeat the process. In a simulation environment, we can generate a (r;, ¢;) pair which
is “stochastically correct” by generating an exponentially distributed random number ¢, for each feasible
event ¢; (parameterized by the event rate) and setting 1,4y = min, {¢s} and ¢;41 = the associated event.
The augmented chain essentially lets the nominal system perform this operation. If the current nominal
state has the same feasible set as the current perturbed state (in the construction) then the observed
(7:, ¢;) pair has the appropriate stochastic characteristics required by the perturbed realization. This
is what occurs when the RAC is in the active state. If the nominal feasible set does not match that
of the perturbed state, we suspend the perturbed construction until the nominal system enters a state
which does match that of the perturbed state, at which point we proceed as before. Suspension of
the counstruction corresponds to the RAC entering the passive state via some Uj;; entcring a nominal
state where we can restart the construction corresponds to the RAC re-entering the active state via the
corresponding V;.

In a non-Markovian environment, things are much more difficult because the (;,¢;) statistics are
not functions of the state alone but also of the elapsed times since the previous occurrence of each
non-Markovian event. In sone cases, however, we can still extract nominal (r;, ¢;) pairs with the correct
statistics. While a complete discussion is beyond the scope of this paper, this appears to be possible
only when we have no more than one non-Markovian event process active at any time, when each U;
with an unobservable non-Markovian event is reachable only by transitions corresponding to that event,
and where each corresponding V; is reachable by trausitions corresponding to the same event. Such a
case is the M/GI/1/K system.

5 Experimental Results

In this section we provide experimental results for three variations on the single server queueing system:
the M/M/1/K, M/GI/1/K, and GI/M/1/K systems (more extensive results are contained in [2]). In
each case considered below, K= 2, the “*GI” distribution is deterministic, and the utilization is 1 (i.e.
A = p). The perturbed systems represent a change in queue capacity of +1. The performance measures
considered are: the utilization, U, the mean queue length, Ng, and the mean delay (or system time),
D. We applied the following variations of our augmented chain approach:

1. URAC/K where we use the original, unobeervable RAC of Section 2 and handle un-

observable transitions by gemerating artificial events, when required, using a2 random
number generator parameterized by the event rate which we assume is known.

2. URAC/E which is identical to the URAC/K case except that we assume the event rate
is unknown, thus we estimate it using observations made in the nominal path.

S. IRAC where we use an imbedded discrete-time RAC.

4. TRAC where we use the observability transformation of Section 4 to obtain a fully
observable RAC.

6. SIM which is a straightforward simulation of the perturbed chain.

€ o .
a €
I3
. .
:o.u«» e
[]
! €
L v
! H
PR
H L
1 €
.]
M “ry ¢
1
L]
[B
w wun -0
]
nate 0F asatvaLs "o an D
—— Siecietion WUNGER OF AamfvaLs
—— Sgatbetlic arricale, basee pecsncter
""" Srathetic srricole, asbineted perometor ——— Slacietice
wmmee Ghaersability tennclorastion == Spatbetic erricels, Vnssa parcecter
—tegoRETICMA, . eeses Bratbetic erricale, estioated perenator

Figure 5: M/M/1/2 Utilization Estimates Figure 6: GI/M/1/2 Mean-Queue-Length Estimates

83

g

3
]
»

o

“rrme arme
"

RAARMI MEMES RPAR

| 107,
149
L%t
1.3
Lo
» w00 X0 » o b
WUMSER OF ARRIVALS WNGER OF ARRIVALS
— ::&l.t:::‘ ¢ . —— Slaeleticn
serve ty Sesaslecastion — Pbservabiliey tranef
""" Cabodded chaia P, w::« cho{- sasforaation

Figure 7: M/GI/1/2 Mean-Qucuc-Length and Delay Estimates

While all these techniques can be applied to Markov processes, not all can be applied to the same class
of semi-Markov processes (see [2]).

For the M/M/1/2 system, we applied the URAC/K, URAC/E, TRAC, and SIM methods. In Figure
S we show the resulting estimates of perturbed utilization as a function of the number of nominal arrivals.
Also shown are the corresponding results using a straightforward simulation of the perturbed system.
All curves are the average of 10 runs. Note that there is little degradation associated with estimating
the artificial parameter from the nominal path as compared to a priori knowledge. Also note that the
convergence of the observability-transformation method is slower than the other methods, indicating
that £ < 1.

We applied the and URAC/K, URAC/E, and SIM methods to the GI/M/1/2 system and the
IRAC, TRAC, and SIM methods to the M/G1/1/2 system; the resulting estimates (averages of 10 runs)
of perturbed mean-queue-length and delay(for the M/GI only) for these two systems are plotted versus
the number of arrivals in Figures § and 7, respectively. The convergence of all methods is comparahle.

Acknowledgement: The authors acknowledge many useful discussions with Don Towsley.

* References

[1] Cassandras, C.G. and Strickland, S.G., “An Augmented Chain Approach For On-Line Sensitivity
Analysis of Markov Processes,” to appear in Proc. 26th IEEE Conf. on Decision and Control, 1987.

[2] Cassandras, C.G. and Strickland, S.G., “A_General Approach For Sensitivity Analysis of Discrete
Eveut Systems With Markovian Propertna, unpublished manuscript, 1987.

[3] Glynn, P.W. and Sanders, J.L., “Monte Carlo Optimization of Stochastic Systems: Two New
Approaches,” Proc. 1986 ASME Computers in Engsineering Conference, 1986.

|[4] Gong, W. B. and Ho, Y.C., “Smoothed Perturbation Analysis of Discrete Event Dynamic Systems,”
to appear in IEEE Trans. on Automatic Control, 1987,

[5] Ho, Y.C. and Cassandras C.G., “A New Approach to the Analysis of Discrete Event Dynamic
Systems,” Astomatica, 19, 2, pp. 149-167, 1983.

[6] Ho, Y.C. and Cao, X, “Perturbation Analysis and Optimization of Queueing Networks,” J. Optim.
Theory and Applications, 40, 4, pp. 559-582, 1983.

{7] Ho, Y.C. and Li, S., “Extensions of Infinitesimal Perturbation Analysis,” subm. to JEEE Trans. on
Automatic Control, 1987.

[8] Reiman, M.L. and Weiss, A., “Sensitivity Analysis For Simulations Via Likelihood Ratios,” Proc. of
1986 Winter Simulation Conference, pp. 285-289.

84

APPENDIX C

-85-

A Comparison of the Processor Sharing and First Come
First Serve Policies for Scheduling Fork-Join Jobs in
Multiprocessors®

COINS Technical Report 87-83

August 26, 1987

D. Towsley
Dept. Computer and Information Sciences
Univ. of Massachusetts
Ambherst, MA 01003

C. G. Rommel
Department of Electrical Engineering
Univ. of Massachusetts
Ambherst, MA 01003

J. A. Stankovic
Dept. Computer and Information Sciences
Univ. of Massachusetts
Ambherst, MA 01003

Abstract

In this paper a model of a shared memory muitiprocessor that executes fork-join
parallel programs as a bulk arrival MX /M /c queueing system is developed. Here a fork-
join job is one that consists of a set of X tasks. All of the tasks arrive simultaneously
to the system and the job is assumed to complete when the last task completes. We
devel.p tight upper and lower bounds for the mean response time of such programs
when the scheduling discipline is processor sharing under the assumptions of exponential
task service timee and a Poisson job arrival process. We atudv twa nacessen sharing
policies, one called task scheduling processor sharing and the other called job scheduling
processor sharing. The first policy schedules tasks independently of each other and
allows parallel execution, whereas the second policy schedules entire yobs as a unit and

“This work was supported part by the National Science Foundation under grant MCS-8104203 and by
RADC under contract RI-44896X and F302602-81-C-0169.

-86-

thereby does not allow parallel execution of an individual program. We find that the
job scheduling policy exhibits better performance than task scheduling only on systeins
with a emall number of processors, where the system is operating at high loads and
is executing programs that can sustain a large degree of parallelism. Consequently, in
general, task scheduling outperforms job scheduling. We also compare the performance
of the processor sharing policy with first come first serve. We find that first come first
serve exhibits better performance over a wide range of systems. The paper also studies
the performance of processor sharing and first come first serve with two classes of jobs,
and when a specific number of processors is statically assigned to each of these classes.

~87-

1 Introduction

With the advent of multiprocessors{Ost86| and programming languages that support parallel
programming, (e.g., Concurrent Pascal (Han75|, CSP{Hoa85], and Ada [Pyl81]) there is
increasing interest in modeling the performance of parallel programs. In this paper, we
evaluate the performance of a particular type of parallel program, a fork-jotn job, on a
multiprocessor consisting of identical processors when the service discipline is processor
sharing. In our model a fork-join job is composed of a set of tasks each of which can be
scheduled independently of the others at any processor. All tasks in a given job arrive

simultaneously to the system. The job completes when the last task completes.

The performance of parallel programs such as fork-join jobs is significantly affected by the
choice of policy that is used to schedule tasks. We analyze the performance of a processor
sharing (PS) policy that schedules tasks of a job independently of each other. We refer to
this policy as task scheduling PS, TS-PS. We compare the performance of this TS-PS policy
to that of a second PS policy that schedules entire jobs (as a single unit) independently
of each other. We refer to this policy as job scheduling PS, JS-PS. The TS-PS policy is
unaware that jobs exist whereas the JS-PS policy is unaware that tasks exist. We also
compare the performance of TS-PS and JS-PS to the first come first serve (FCFS) policy.
In these comparisons we consider different numbers of processors, sizes of fork-join jobs,
multiple classes, and dedicated assignments of the processors of the multiprocessor to the

different classes.

In the course of our study, we develop upper and lower bounds on the mean fork-join job
response times under TS-PS. These bounds are generally very tight and we approximate
the mean job response time by taking the average of the two bounds. Analyses of the other
two policies, JS-PS and FCFS have already appeared in the literature ([RTS87,NTT87)).

We make the following observations from our study.

¢ FCFS provides better performance than TS-PS or JS-PS for a wide range of workloads

and number of processors. It appears that the advantages that FCFS has over PS in

-88-

single processor systems carries over to multiprocessors executing parallel programs.
This carries the implication that one should choose large quantum sizes for round

robin policies operating on multiprocessors.

e TS-PS performs better than JS-PS most of the time. However, if the number of
processors is small, the degree of parallelism high, and the processor utilization is
high, JS-PS can perform better. This same phenomenon was observed on single

processors in an earlie: study, (RTS87].

o It may be useful to partition the processors in a multiprocessor into separate pools to
handle different classes of jobs rather than having the jobs share the processors. We
observe that jobs requiring the least amount of computation can benefit from such a

partition.

In the remainder of this section we briefly review earlier work and outline the remainder
of this paper. Processor-sharing has been addressed in the literature in several ways since
its introduction (Kle64]. A survey of processor-sharing results may be found in {Kle76].
An exact analysis of the TS-PS policy operating on a single processor was performed by
Rommel, et al. [RTS87). Unfortunately, the approach used in that paper does not extend
to multiple processors. This study first demonstrated that job scheduling can give better
performance than task scheduling. In addition, there is a growing literature on fork-join
queueing systems [BM85,BMT87,NT85]. Although these referenced papers analyze fork-
join jobs, their analysis differs from that studied in this paper in that processors are allocated
to specific tasks prior to execution. We are interested in systems where proi:essors can be

dynomically allocated to different tasks.

The format of this paper is as follows. We describe the queueing system under consideration
in Section 2. Section 3 contains expressions for the upper and lower bounds on the mean
response time for the TS-PS scheduling policy along with an approximate analysis of that
policy. This is followed by our numerical results in Section 4. Finally, in Section 5 we

summarize the results of the paper.

-89-

2 Model Description

We consider a system of ¢ identical processors that serve a single queue. Fork-join jobs
enter the system according to a Poisson process with parameter A. A fork-join job consists
of X tasks that can be processed independently of each other where X is a random variable
(r.v.) with probability distribution o; = P{X =1}, i = 1,2,.--. The service time required
by a task is assumed to be an exponential r.v. with parameter g and is independent of the

service requirements of all other tasks.

We are interested in the steady state behavior of this system when operating under the
task scheduling processor sharing (TS-PS) and the job scheduling processor sharing (JS-
PS) policies. As described in section 1, TS-PS is a policy that performs processor sharing
at the task level and JS-PS is a policy that performs processor sharing at the job level.
Thus, if the system contains two jobs, one with one task, the other with three tasks, then
TS-PS provides an equal amount of service to each task and is capable of utilizing four
processors. In this same example JS-PS sees two jobs, one whose service time is that of a
single task, the other whose service time is the sum of the service times of the three tasks.

JS-PS provides equal service to the two jobs and is only able to utilize two processors.

In both cases, we focus on the response time of a random job, i.e., the interval of time
measured from the arrival of a job until the service completion of the last task associated
with that job. The system can be visualized as a queue for tasks, ¢ servers, and a waiting
area for tasks that have completed service but are awaiting the completion of the last
task associated with the job (Figure 1). This last queue is sometimes referred to as the

synchronization queue. We denote this response time as T'.

3 Analysis

In this section we concern ourselves with obtaining the mean response time E|(T| under

both TS-PS and JS-PS. We consider JS-PS first as it is the simplest to analyze.

-90-

Job Queue

Tasks

/N

\ |

O

Figure 1: System Model

-91-

e i .
Job Synchronization Queue

3.1 The JS-PS policy

Let L denote the number of jobs in the system under JS-PS. The distribution of L is
identical to the queue length distribution of an M/M/c system with arrival rate A and

average service time E[X]/u. Consequently, the average response time, E{T, is ({All78])

u(EIX1/p)
ccliuc/e! + (1= u/e) Tizh un/nl)(1 - u/c)

ElT) = + E[X)/u. (1)

where u = AE(X]/u. E[T] = E(L}/A.

3.2 The TS-PS policy

To analyze the TS-PS policy, consider the delay that a randomly selected job incurs. Let
J denote this job. Let N be a r.v. that denotes the number of tasks in the system
at the time that J arrives. Let x, = P[N = n], n = 0,1,--- denote the stationary
distribution of N. Let t;, denote the mean response time of J conditioned on the event
that J consists of 1 tasks and that the system contains N = n tasks ai the time of its
arrival, i.e. t; o = E{T|X =i, N = n]. We can write the following expression for the mean
job response time,
o
EITIX =i]=) mntin, i=1,-- (2)
n=0

Removal of conditioning on the number of tasks in J yields

mn:imng=q (3)

=1

As described above, the number of tasks in the system is described by a Markov process.
Fortunately, the behavior of this Markov process is independent of the policy used to sched-
ule tasks so long as the policy does not schedule jobs based on service time information.
Consequently, the distribution of N is identical to that for a bulk arrival MX/M/c system
that schedules tasks in a FCFS manner. Expressions for the queue length distribution for

this system can be fcund in earlier papers [CT83,Ya085,NTT87] and are omitted here.

-92-

Figure 2: State diagram for the exact system when jobs consist of 2 tasks.

We focus on the conditional expectations t; ,. We define a Markov Chain with state ([;, M,)
with infinitesimal generator Q where [; is the number of tasks remaining in J at time ¢
after J is introduced at time O, M, is the number of tasks in the system at time t that are

not part of J, and Q = {g(; n),(t.m)] Where

g d=i-Ln=m,
iem I=im=n-l,

9iin)(Im) = AQm—n, i=1, m>n, (4)
~(A+ ttign), =1, m=n,
0 ,otherwise

where

- k“) k=1,--+c
Be = cu, k=C+1,“'-

The resulting chain is transient. Figure 2 illustrates the associated state diagram when all

jobs consist of exactly 2 tasks.

-93-

It follows from the definition of Q that ¢, , satisfies

1) .-
t = + apt) x
1.0 A+ '\-rmg‘l '
1 A x nuﬂ.,l/'(n -~ 1)
t = -+ Qklinek + ———————tip-y, N =1,--",
hn At pnel AT dnel ,; n A~ fnet "
1 A& 78 .
tio = ; aptip + ticio, 1=2,°%",
1,0 A+}L‘T/\+ﬂq§ ki k /\+#i| 1.0
1 A s
t = + apls
in A+[1>"+n /\+#'_*n k—; ki n+k
nm+n/(i+n)t_ t'm+n/(i+n)t_ L= ip= 1. s
—x:-r-,n—1+T‘—1.n, Sdyrsn =1, ()
n n

Consider the last expression, t; ,. The first term is the average time that the system spends
in state (1,n). The second term is the contribution to t,;, due to an arrival. The third and
fourth terms are the contributions due to a departure of a task belonging to J and a task

not beionging to J, respectively.

We are unable to obtain a closed form solution to equation (3). As there are a countably
infinite number of unknown variables t;,, f = 1,---;n = 0,---, it is impossible to obtain
exact numerical values for these quantities. Consequently, the remainder of this section is
concerned with developing upper and lower bounds on the conditional expectations ¢, ,.
These can be used to obtain upper and lower bounds for E{T|X =1], i =1,---. We treat

each in turn.

-94—

Figure 3: The state diagram associated with the lower bound, 2 tasks per job.
3.2.1 A Lower bound on E[T|X = 1]

We study a Markov chain with state (I,(u),M,(u)) that yields lower bounds tf.f:) on t n,

t=1,---,n=0,.-. This chain has infinitesimal generator QW = [qgf)‘)'(,m)] where

'::‘;I‘i-o-m l=f‘1:ﬂ=m§05m53'
Trm bitn, l={,m=n~1;1<m<B,
- AQm~n, i=1,0<n<m<B,
Qimpitm) = § ATi2p-nar, (=i, m=B,0<n<B, (6)
=(A+ isn), =, m=n,0<m<B,
—Wi+B» i=l, m=n=B8B,
\ O, otherwise.

This Markov chain corresponds to a system in which no more than B tasks not belonging
to J are allowed in. Consequently, this modified system has fewer tasks that do not belong
to J than the original system. The response time of J will be less in this system. Figure 3

illustrates the state diagram for this Markov chain when each job consists of exactly 2 tasks.

f—

12)

in satisfy

The conditional expectations, ¢

w - _1) ()
R e (Z"* * 3 el

k=1 E=B+1
1 n n+1

RO L pner/(n)t(lun)_l +

A+ Untl A+ pasl)

= (15)
,\—_— Z"‘*‘m-ﬂ‘*’ 2 artyp|, n=1,-.B,
T Hntl \ 4= k=B-n+1

() _ 1 U (1)
tio = , ti_1,0

A+ A4y

00
(Zat([) E akt$f2)$ 1=2,---,

k=8B+1

(13) 1 A 8-p (1) (13)
tn = — + Eat n+k T Z agt, g | ~

A"'#ﬁ-n ’\+F'i+n k=1 k=B-n+1

npien /(i + n) S(1)
A+ Litn & -

tivn/(§ +0) (1)

+ :
1 A+l‘1’+n -1,

1=2,--;n=1,---, B (7

Last, t, ,, n > B is bounded from below by t(la), ie.,

tSf:) Euﬂ)' i:L..-;n:B-{-l,"'. (8)

Thus we have the following lower bound on E{T|X = 1],

E[T|X=1i] < Z xat® + PN 2 BItlY, i=1,--. (9)

n=0

-96-

Figure 4: State diagram for upper bound, B = 4.

3.2.2 An upper bound on E[T|X =1]

We study a Markov chain with state (I,(“b),M,("b)) that yields upper bounds tf",‘f) on tyn,

i=1,---,n=0,--- This chain has infinitesimal generator Q{“}) = {q((:f,’)‘(,'m)] where

(

ien, I=i-l,n=m0<mg<B,
o Biens I=i,m=n-1,1<m< B,
{ub) _ HKi+n, l="vm=n-1;BSmr
Windtm) = Y Aamen, i=,0<n<m, (10)
-(x+“‘.4'ﬂ)i i=l,m=n,0$m,
L o, otherwise.

This system behaves like the original system except when the number of tasks n not be-
longing to J exceeds B. In this case, the system is not allowed to serve J, but instead only
serves the other tasks. This continues until the number of additional tasks falls to B at
which point the system behaves like the original system. Figure 4 illustrates the bebavior

of this system when jobs contain exactly two tasks and B = 4.

Assume that B > ¢. Consider the situation where J c.ntiins v tasks and there aie an

-97-

——M

additional j < B tasks in the system. Now assume that k tasks arrive and that n -k > B.
In this case, the time during which there are B + 1 or more additional tasks in the modified
system is equal to the length of the busy period associated with a bulk arrival MX /Af/1
queue with rate uc that is initiated by the arrival of n + k — B tasks. Consequently, we
can write the following set of equations describing the expected response time of a job
conditioned on the number of tasks at the time of arrival and the number of tasks in the

arriving job, t‘(:),

ub 1 ub
(10) = A+ /\+p1 (Za"t() Z +b"‘3))’

k=1 k=B+1
(u) 1 (ub) S
t = at -+ a(t +b,. +
b A+ pn+l /\T#vwl g ek t:Bng-l k(® wt-2)
- 1
Zhn _:./(n+) (1u:).11 ﬂ:ly'.'gB)
A+ bl
A A Eakt()+ Z ar (%) + bx_p)
~ At TXF Ko\ k=1 k=B+1 P
B (ub) -
A+p‘tl‘10’ '_2’..-’

1 A
@ - (Eontitis £ onetheboncn)]+

’\ + Hitn ’\ + Hi+n - k=B-n+1

Nisn/({ + n) () Tpivn/(+ 1) (u)

(,1=2,. n=1,---,B.
’\+#"+n ,n=—-1 /\+F\+n | I.n 1 B (11)

where b; is the average length of a busy period of an MX/M/1 queue with arrival rate A
and service rate uc that is started by the arrival of ¢ tasks. The value of b, | = 1,--- is
(IGHT8))

1 AE|X|
b= (” (e - wlxn) ‘

-98~

Last, t; ,, n > B can be bounded by tf_':) given by

zf"‘:)ztff‘;“rb,,-a, n=B<+1,--. (12)

These expressions can be substituted into the following relation to obtain an upper bound

on E[T|X =1,

= b
Zﬂnt‘(-;), { = 1,---,

n=0

E{T|X =]

IA

7aN

B
3wt 4 (1~ P[N < B])t%)

n=0

B
+b (E[N]- B(1-P[N < B)) - Zmr,,) L i=1--. (13)

3.2.3 Approximate analysis of TS-PS

Let T(% and T(“) denote the r.v.’s defined in the preceding sections that bound T from

below and above. We use the following approximation for E[T|X = 1],

BT X =] = (B[T™)|X = i) + B[T)X =4])/2. (14)

The accuracy of this approximation is high when the system load is low and/or when the
parameter B takes a large value. We explore both of these effects in Table 1. Here we
evaluate the upper and lower bounds on E[T] for a system of 16 processors that process
fork-join jobs containing exactly 16 tasks. The bounds are tabulated for different values of
the processor utilization, p = A/u and for different values of B. We observe that sufficient
accuracy is possible for processor utilizations up to .9 provided B = 350. In this case, the
maximum error incurred by the approximation is 3.6% at p = .9 and less than .05% for

¢ < .8. We shall use B = 350 throughout our studies.

-99-

p B=30 B=100 B=200 || B=350 |
lower | upper lower | upper || lower | upper | lower [upper i
] 55.03| 355.03f 55.03| 355.03 1 55.03| 535.03] 55.03| 55.031

21 56.68| 56.41| 56.68] 36.68 || 36.68 | 36.68 | 36.68| 36.68 |
3 59.21] 39.41 39.32| 59.32| 59.32] 39.32(59.32 | 59.32
4] 62.95| 6391 | 6347 63471 63.47| 63.47 | 63.47| 63.47
5| 68.18] 7178 70.02] 70.16 | 70.10| 70.10 70.10] 70.10
61 75.17] 87.01| 80.60] 81.70 81.17| 81.17 | 81.17| 81.17 ||
Tl 84.14 | 121.64 | 97.97 | 105.37 | 101.50 | 101.28 | 101.38 | 101.38 |}
81| 95.20 | 225.95 || 126.68 | 175.40 || 142.94 | 148.56 || 144.88 | 145.04 |
.9 |[108.14 | 792.05 || 173.09 | 601.33 If 242.70 | 389.11 {| 271.46 | 291.96 ||

Table 1: Approximation Analysis

4 Comparison of Scheduling Policies

In this section we compare the performance of TS-PS, JS-PS, and FCFS. Specifically, we
compare the mean job response time for different processor utilizations as we vary the
number of processors and the job size. We also compare the performance of TS-PS and
FCFS on a system that serves two classes of jobs: edit jobs and batch jobs. Edit jobs
are assumed to consist of a single task whereas batch jobs consist of many tasks. Last,
we consider the effects of partitioning the processors into two sets; one to serve edit jobs
exclusively and the other to serve batch jobs exclusively. For this last study, we compare
the performance of the partitioned system under TS-PS to one where the processors are

available to all jobs under TS-PS.

4.1 Comparison of TS-PS, JS-PS, and FCFS

In this section we compare the TS-PS, JS-PS, and FCFS policies as.a function of the
processor utilization. In Figure 5 we plot the ratio of response times of TS-PS to JS-PS,
and TS-PS to FCFS for two workloads as a function of the processor utilization, p. The
workloads consist of jobs with a constant number of tasks that is equal to the number of
processors, i.e., X = 8,¢ = 8 and X = 16,c = 16. The average task service time is taken

Lo be I/c. From this figure we observe that FCFS provides uniformly better response over

-100~-

the two P’S policies for all processor utilizations. Furthermore, TS-PS gives lower response
times than JS-PS for all processor utilizations less than 0.9. This is due to the fact that
TS-PS takes advantage of the parall'elism inherent in the fork-join job. We shail observe,
however, TSPS is not always better than JSPS for very high utilizations in Section 4.2.
The better performance exhibited by FCFS is due to the fact that TS-PS penalizes larger
jobs, while no such penalty exists for FCFS (a more detailed discussion of this penalty

phenomenon is given in the next section).

We also tested a workload consisting of two classes of jobs: edit jobs and batch jobs. Edit
jobs consist of a single task and batch jobs consist of 16 tasks. Let f denote the fraction of
jobs that are edit jobs. We considered three mixes, f = .5,.95,.99 operating on a system
containing ¢ = 16 processors. Figure 6 illustrates ratios of the mean job response time of
TS-PS to FCFS as a function of the processor utilization p. We observe that the FCFS
policy exhibits the best performance everywhere except when the utilization is high and
the fraction of edit jobs is high (f = .95,.99). In this region TS-PS provides slightly lower

response times.

This workload, (f = .95,.99), was chosen so as to increase the variability in the service job
service times in an attempt to illustrate a setting in which TS-PS outperforms FCFS. It is
surprising that the difference is so small. This is an indication that FCFS is a more robust
policy on multiprocessors that execute parallel programs than it is in a system where jobs

are executed serially.

From this figure we can also observe that TS-PS provides only slightly better service to edit
jobs than FCFS, but significantly worse service to batch jobs.

4.2 Dependence on Number of Servers

In the last section we observed that TS-PS provides better performance than JS-PS for all
of the examples. This appears to be at odds with observations that we noted in an earlier
study [RTS87] on the performance of TS-PS and JS-PS in a single processor system. In a

single processor system, JS-PS was shown to be uniformly better than TS-PS. This is due

-101-

9FT=0 9=
SAD4d/8481

8=0 g=Xx
sSd24/8dS1

9T=0 9T=X
$dsSr/sdsl

g8=0 @g=x
S$dSr/84ds81

6°0

S dJUNOIA

L0 90

oy

£°'0 »°'0

€°0 2°'0 T°0

o

[B e TN AERL AN |

v—y

dquliﬂ,-ifiq

Y YY ' "1 °*~"

3104 pue §d§f

SA

BuT[npayas Ase]

-1y vyyvJryvrvveygpvveyry

' WU PUTE PUTE PUTE SUWE PUTY W HE

Laaat e
®
.
of

of3ey

oce=d

~-102-

9 JUNDIL
oya
#66 3tpa T 6'0 8°'0 L'O 9'G €'0 ¥‘'0 €0 2'0 T°'0 o
[B S0 S St G b A% B Sas 0 S0 AN SIL AR AR AN AS SILSEED S0 S0 B AR AL S0 SN SA/MAS AR AN SIL A A An b SR et an s an s an e ag B 0
—_——— 20
%1 yojyeg
»°0
————— 9°'0
% 0% %P3 8°0
-— o - -eo 0ol
T
Y% 0 qoyeq \,\.w..\n..\..\ 2°3
..\\s \\\ P
............. \ L4 \\\ 'oﬂ
hal :u..(u).v\.\\ss\ “~
% 6 31Pd o L hoshNve 9°1
/ 2 7
llllll »
/ 81
'4
'4
%S yojeg wv/ 2
“% $ Wuvg ojIey

SI) SA §481
{3i1m Sqof
}IPT pue Yojeq

oce=H
9T=X
97=0

-103-

to the fact that in such a system there is no possibility for paralielism and the following
occurs. Assume that there are 2 jobs, one with 1 task and one with 9 tasks. Then TS-PS
gives the job with 9 tasks, 9/10 of the processor, and the job with a single task only 1/10
of the processor. However, JS-PS would give each job 1/2 of the processor. So on a single
processor, TS-PS penalizes jobs with a small number of tasks. In a multiprocessor, there
exists sufficient possibilities for parallelism so that this anomaly found in a single processor

for TS-PS does not exist.

To study the effect of parallelism, we cousider a workload of jobs consisting of 16 tasks and
study the performance of TS-PS and JS-PS on systems with ¢ = 1,2, 4, 8, 16, 32 processcrs
as a function of processor utilization. Figure 7 illustrates the results of this study plotting
the response time ratios of TS-PS to JS-PS. We observe that TS-PS is always better than
JS-PS in muitiple processor systems when processor utilization is low. However, when the
number of processors is small (< 8), there exists a utilization value, say pg such that system
performance is better under JS-PS when p > pg. This threshold is an increasing function
of ¢ the number of processors. This results because as the number of processors increases,

the capability of sustaining parallel program execution under TS-PS increases.

4.3 Processor Partitioning

We now study the effect of dedicating a potion of the multiprocessor to each of the batch
and edit classes. For edit jobs we assume that the computation time is small and equivalent
to one task unit. Batch jobs are assumed to be large, consisting of fork-join tasks. The

individual tasks from either class are assumed to have the same service requirements.

In order to examine the effect of statically dedicating a portion of the multiprocessor to each
class, we compare the performance of a system composed of 16 servers where each server
can run either class of job, to a partitioned system where some fraction of the processors
are dedicated to each class. The combined system is composed of ¢ = 16 servers. The
partitioned system is composed of ¢ = 16 servers such that K servers are dedicated to edit
jobs and ¢ — K servers are dedicated to batch jobs. Our performance metric is the ratio of

the response time of the partitioned system to that of the combined system.

-104-

L qYNDIA ose=d
9y =x

oyx

8°0 L0 9°0 €0 v°0 £€°'0 2°'0 T°0

O

Yy <-<J<<—41-4441-414444—114414114141\—<<*-W44<L°
F
. I-onll-l-.lltll.l-\lcll- et ¢ P ¢ ——— o - C— w— o Sugu P —] .
— SRS Jz0
- e o =]
: St -—
K e - — —)
-~ - — ;]
\s.\\ -~ — ~ T e J ’-o
- —-— e
e — —~ T e M
< 7 e
-
d - 90
R 7 .- ,
Ve .- 1
.) \ ““‘]
7~ e] Qoo
.‘ p
-
/s .- ‘
\' L

[N S PN I I U

SdSr/SdSL otaeyd

SK0S53004J JO XIqUNY

)
35078481 -

~105-

In this experiment the independent parameter is the combined system utilization. Our first
experiment consists of an arrival of 50 percent edit jobs and 50 percent batch jobs. Note
that this arrival pattern resuits in the total computation time of edit jobs to be 1/16 of
batch jobs. The partitioned system is defined by K and the equivalent flow of jobs. We

plot our results in (Figure 8).

We can observe several interesting phenomena from Figure 8. First, by dedicating only one
server to the edit jobs, K = 1, both edit and batch jobs degrade. Thus, a poor partitioning
choice negatively effects both classes of jobs. Second, improvements can be made in the edit
jobs by allocating enough additional servers, K = 2,3, to handle the computational load of
edit jobs, but this is done at the expense of the batch jobs. This phenomena is especially

striking at high utilizations.

As the relative arrival rate between edit and batch jobs increases, as show in (Figure 9) where
the proportion of edit jobs is 95 percent, we see that more servers must be dedicated to edit
jobs before the mean response time is decreased. Note that in this case the total computation
time required by edit jobs is greater than needed by batch jobs. The result is that 9 of the
16 processors are required to reduce the edit job response times (see (Figure 9)). There are
regions in the figure in which the performance of both jobs classes decrease, however, we
observe no region in which both classes improve performance. This phenomena has also
been reported in [NTT87] for FCFS scheduling.

Figure 10 reports the results when batch jobs are composed of 4 tasks and the workload
contains 50% batch and 50% edit jobs. The results in this figure are similar to the 95%
edit jobs and 5% batch job tests shown in the previous figure. The reason for this is that
when batch jobs are fairly small, z = 4, and there are 50% edit jobs and 50% batch jobs in
the workload, then the total computational requirements of edit jobs is high (as in the 95%
test) for a given utilization. Therefore, edit jobs will saturate a small number of processors.

Notice that only when the number of processors dedicated to editing reaches 4, does editing

perform well.

~106-

Partitioning
at
90 %
Ratio Partition/Not
10 : K=1 Edit
[
|
r K=2 Edit
K=3 Edit
r ------------
K=1 Batch
[
F
- K=2 Batch
} \
-_\
! ’)\ K=3 Batch
NS FTURE IO SN T TE SUTPE ITRTE SUTHY STU N SUSen

rho
x=16 FIGURE 8
B=350
-107~

R R R ..

Partitioning
at
99 %
Ratio Partition/Not
10 ~ K=7 Edit
[
- K=8 Edit
K=9 Edit
r
K=10 Edit
- K=7 Batch
[
L) K=8 Batch
K=9 Batch
ST FTETE FEWTE T FUTI RVOTE FTTTE FUTTE SO T N TR |
Qo 1 q ™ < n '} [® (-] - K=10 Batch
=] Q (=] o (=] Q o Q (=]
rho
FIG 9
=16 URE
B=350

-108-

Partitioning
at
a0 %

Ratio Partition/Not

10

»x=4
B=35S0

:' K2l l’ K=1 Edit
B EA!‘ ;‘“‘z?‘
- ‘ Edit
L ’
]

L ’ K=2 Edit
! A

K=3 Edit
r

K=q4 Edit
I~ —_— —
L
-
s K=1 Batch
L

t=2

X Bawey K=2 Batch
r-

K=3 Batch
IS FTUYE U FRTHE FURTE FUTTE IR WE FUTWE FTUWE S WU |
(] - N ™ <¢ n Y] ™~] (] - K=4 Batch

(=] (=] o (=) Q Q o Q o
rho
FIGURE 10

-109-

5 Summary

We have analyzed fork-joixi programs as a MX /M/¢ queueing system. We have obtained
am expression for the mean response time of a fork-join task under processor-sharing. Since
our expression is not in closed form, but given as a set of recurrent equations, we have
obtained expressions for both lower and upper bounds. Our bounds become tight as the

number of states increase.

. We have compared three scheduling approaches: TS-PS, JS-PS and FCFS. We have ob-
served that in general FCFS out performs both TS-PS and JS-PS. Likewise, we have ob-
served that TS-PS performs better than JS-PS unless that number of servers is small com-

pared to the number of tasks.

We have considered the interesting problem of partitioning the system into two subsystems.
Each subsystemn is dedicated to one of two job classes: edit jobs and batch jobs. We
determined several interesting results. When half the jobs are edit jobs and one server is
dedicated for edit jobs exclusively, both classes experience an increase in response time.
Improvemnents in edit jobs always cause a reduction in the performance of batch jobs in
the partitioned system. This suggests that a parallel system should have a controllable

boundary for processor partitioning.

References

[Al78] Arnold Allen. Probability, Statistics and Queueing Theory. Academic Press, New
York, New York, 1978.

[BM85] F. Baccelli and A. Makowski. Simple computable bounds for the fork-join queue.
Proc. Conf. Inform. Sci. Systems, 1985.

[BMT87] F. Baccelli, W. Massey, and D. Towsley. Acyclic fork-join queueing networks.
submitted to JACM, 1987.

[CT83] Chaudhry and Templeton. First Course in Bulk Queucs. J. Wiley, New York,

-110-

(GH76]

|Han75)

[Hoa85]

[Kle64]

(KleT6]

[NT85)

[NTT87)

[Ost86)

[Pyl81]

[RTS87|

[Yao85]

New York, 1983.

Gross and Harris. Introduction to Queueing Theory. J. Wiley, New York, New
York, 1776.

P. Brinch Hansen. The programming language concurrent pascal. [EEE Trans-

action on Software Engineering., 1, 1975.

C.AR. Hoare. Communicating Sequential Processes. Prentice-Hall International,

London, 1985.

Leonard Kleinrock. Analysis of a time-shared processor. Naval Research Logistics

Quarerly, 11, 1964.

Leonard Kleinrock. Queueing Systems Volume II: Computer Applications. J.
Wiley, New York, New York, 1976.

R. Nelson and A.N. Tantawi. Approximate analysis of fork/join synchronization
in parallel queues. IBM Report RC11481, 1985. to appear in IEEE Transactions

on Computers.

R. Nelson, D. Towsley, and A. Tantawi. Performance analysis of parallel process-

ing systems. to appear in [EEE Trans. on Software Engineering.

Anita Osterhaug. Guide to Parallel Programming. Sequent Computer Systems,

Inc, Beaverton, Oregon, 1986.

I.C. Pyle. The Ada Programming Language. Prentice-Hall International, London,
1981.

C. Gary Rommel, D. Towsley, and J. Stankovic. Ananlysis of fork-join jobs using

processor-sharing. Submitted to Operations Research, 1987.

D.D. Yao. Some results for queues MX /M/c and GIX /G /c. Operations Research
Letters, 4, 1985,

-111-

APPENDIX D

~112-

ACYCLIC FORK-JOIN
QUEUEING NETWORKS

Frangois BACCELLI !

William A. MASSEY ?
Don TOWSLEY 3

COINS Technical Report 87-40

ABSTRACT

In this paper we study the class of acyclic fork-join queueing networks that arise in var-
ious applications, including parallel processing and flexible manufacturing. In such queueing
networks, a fork describes the simultaneous creation of several new customers which are sent
to different queues. The corresponding join occurs when the services of all these new cus-
tomers are completed. We derive the evolution equations that govern the bebavior of such
networks. From this, we obtain the stability conditions and develop upper and lower bounds
on the network response times. These bounds are based on stochastic ordering principles and
apply under general workload assumptions.

' INRIA B.P. 105 - 78153 Le Chesnay (France)

* ATT BELL LABORATORIES, Murray Hill - NJ - 07940 (US.A.)

3 University of MASSACHUSETTS Ambherst - MA - 01003 (US.A.) Professor Towsley's
work was supported by RADC under contract F302602-81-C~0169.

-113-

e

In this paper we study the claas of acyclic fork-join queueing networks, in short "AFJQN’s", that
arise in the performance analysis of parallel processing applications and flexible manufacturing
systems. We obtain the stability conditions and develop upper and lower bounds on the performance
of this class of networks under very general workload assumptions.

AFJQN’s arise very naturally in parallel processing applications. Many parallel programs are
decomposed into tasks, each of which can execute on a separate processor. The division of the
parallel program into tasks can be described by a directed graph where the nodes correspond to
tasks and the directed edges represent the precedence relations between the tasks. In many cases,
the underlying graph is acyclic and the program is implemented with the use of fork and join
constructs. Briefly, a fork exists at each point in a parallel program that one or more tasks can
be initiated simultaneously. A join occurs whenever a task is allowed to begin execution following
the completion of one or more other tasks. Forks and joins reflect themselves in the underlying
computation graph in the following manner. A task that has one or more outgoing edges corresponds
to a fork. A task with one or more incoming edges corresponds to a join. These are exemplified by
the parbegin and parend constructs that are available in parallel programming languages such
as Concurrent Pascal [Br 75], Concurrent Sequential Processes (CSP)(Ho 78], and Ada [Py 81].

Consider a multiple processor system where each task in a specific program is mapped onto
a separate processor. The execution of a single program request can be described as follows: (i)
Upon completion of a marked task, tokens associated with the program are routed to each processor
handling the tasks that follow the marked task in the underlying computation graph; (ii) Once a
processor has received tokens from all tasks that precede a marked task in the computation graph,
this processor is allowed to execute it. Let this system be required to service a stream of requests
corresponding to different instances of that program and assume each processor executes its tasks
in the order defined by the program arrival dates. We have described, in brief, an AFJQN. Figure
1a illustrates a hypothetical parallel program using forks and joins and Figure 1b illustrates the
associated fork-join queueing network.

AFJQN’s also arise naturally in the context of flexible manufacturing systems. In production
lines, objects are built by assembling multiple parts together. The successive assembly steps are
described by an acyclic graph where the nodes correspond to assembly operations and the edges to
precedence constraints between these operations. Here, a join occurs whenever all the parts to be
produced by the operations that precede a marked operation have to be available in order to begin
assembling. A fork occurs at points where several assembly operations are initiated simultaneously
(for instance at points where the production of some part is followed in the underlying graph by
several assembly operations to be done on this same part). Assume each assembly operation is
allocated to a specific machine. We have another instance of AFJQN when identifying assembly
machines with the servers of the queueing network and the parts with its customers.

Apart from the subclass of Jackson series networks, the type of queueing networks we consider
here remain basically unsolved. It can be shown that the "synchronisations® induced by the forks
and the joins destroy all nice properties like insensitivity or product form, so that every problem
becomes computationally hard. Initially, most attention focussed on fork-join networks consisting
of B queues in parallel. In this case, exact solutions have been provided for B = 2 in [FH 84| and
[Ba 85]. Approximate solutions and bounds have been provided for arbitrary values of B in [BM
85], [NT 85|, [TY 86] and [BMS 87]. Conditions for stability have been presented for arbitrary
values of B in [BM 85] and [Si 87]. Last, models have been developed for programs exhibiting
parallel fork-join structures that are executed on multiple processors serving a single queue in
[KW 85] and [NTT 87|. Series-parallel Fork Join queueing networks have been introduced in [BM
85], where stability condition and bounds were derived.

Several classes of stochastic ordering principles have been considered in the queueing literature

-114-

(see [St 84] for a comprehensive treatment of the issue). It was shown for instance, that an
increased input (resp. decreased output) intensity leads to higher (resp. reduced) moments
of the waiting or response times for wide classes of queueing systemns (see [Wh 81}). Another
type of ordering comes from the idea that an increased variability of either the input or the service
statistics should aiso lead to higher waiting or response times. This has been discussed by several
authors in the context of isolated queues (see {St 84}, (Ha 84|, [Wh 84],(BM 85b|). The latter
ordering principle was used in (BM 85| (resp. [BM 85b]) to compare the moments of the delays
experienced by customers traversing parallel (resp. series-parallel) fork-join queueing networks te,
the related moments of product form networks. Both upper and lower bounds were derived using
this principle.

A third type of ordering arises when a set of random variables (RV’s) are associated. In this
case the statistics of the maximum over these RV’s are bounded by the maximum of the marginals
of these RV’s . This approach was used in [NT 85] and [BMS 87] to develop upper bounds on the
moments of the delays experienced by customers traversing a parallel fork-join network.

The aim of this paper is to extend the scope of these ordering and bounding techniques to
the class of arbitrary AFJQN's which are rigorously defined in Section 2. The equations governing
the bekhavior of these networks are provided in Section 3. This section aiso contains necessary and
sufficient conditions for the stability of these networks under fairly general statistical assumptions.
This stability result is based on an extension of Loynes’ method [Lo 62] to this class of queueing
networks. Bounds based on convex ordering are described in Section 4. Although these arguments
yield upper and lower bounds on the moments of customer delays, tighter upper bounds are obtained
in Section 5 using stochastic ordering properties of associated RV’s. Sections 6 and 7 are devoted
to the derivation of bounds of practical interest based on convex ordering and associated RV’s
respectively. All these bounds exhibit the same stability condition as the initial queueing system.

2 Notation and definitions

We are concerned with the delays that customers experience when they traverse an Acyclic
Fork-Join Queueing Network 8. Here 8 is represented by an acyclic graph G = (V, E) where V is
a set of B FIFO queues labeled i = 1,..., B and E is a set of links such that (5,5) ¢ E implies j > 1
(such an ordering is always possible in an acyclic graph).

Define the set of immediate predecessors of queue 1, p(t), to be the set of queues that have a
direct link to queue ¢

P()={5ec(1,B)| (i) e E} (2.1)

and the set of immediate successors of queue 1, s(1), to be the set of queues to which i has a direct
link

s()={je(L,B)[(7)) e E}. (2.2)

Define the set of predecessors of queue s, x(i), to be the set of queues that have a (possibly)
indirect link to queue s :

=() = (YU P (). Jp '), (2.3)

where p(X) denotes the set of immediate predecessors of the queue of X, a subset of (1, ..., B) and
p"(X) denotes p(p(..p(X))..)).

-115-

We also denote as s{0) the set of queues with no incoming links and as p(B + 1) the set of
Queues with no outgoing link. It will be assumed that the numbering of queues is such that

8(0) = (1,...,80), Bg < B (24)

and

Observe that p(s) =@ if 1 € 5(0) and s(s) =B if f e p(B + 1).

We associate with queue j, 1 < j < B, a sequence {02} , where o), ¢ R* represents the
service requirement of the n-th customer to enter this queue. Queue j behaves as a single server
FIFO queue so that an arrival pattern {a,}5° to this queue together with the sequence {0} }5° fully
determine the sequence of service completion dates (using the Lindley-Loynes equations).

Definition 0

An acyclic queuing network, as defined adove, s an st Acyclic Fork-Join Queueing Network if 1t
obeys the following rules:

(i) There is a single ezogeneous arrival stream with pattern ap = 0 < @y < .. < @, <
..«€RY. The n-th customer arrival to queve i, 1 < i < By, coincides with the n-th
date of this exogeneous stream. A stated above, this fully determines the sequence of
service completion in the queues 1 < 5 < Bo.

(1) A service completion in queue § does not systematically trigger an arrival to a queue of
s(1). The arrivals to queve 3, j > By, are precisely generated as follows: assume the
sequence of scrvice completions is known for all queuesa l < < 3, where Bo < 7 < B.
The n-th customer arrival to queue §, a’,, coincides with the latest of the n-th service
completions in the queues of p(s). Due to the acyclic structure of V', this successively
defines the arrival patterns sn queue Bo+1,B9 + 2,..., B.

(5si) There is a single output stream out of this network. Its n-th event cosncides with the

latest of the n-th service completions in the queues By, By + 1, ..., B.

As it will be seen in the next section, these three rules fully determine the evolution of the queueing
network.

Some of the bounds dicussed in the application sections 6 and 7 will only apply to certain
subclasses of AFJQN's, namely parallel and series networks. An AFJQN J is said to be a parallel
one with K > 2 subnetworks with respective underlying graphs G, = (Vi, E¢), 1 < k < K, if its
graph G is decomposable into the K discoannected subgraphs G,,...,Gx. An AFJQN 2 is said to
be a series one with K > 2 subnetworks with respective underlying graphs Gy = (Vi, E), 1 <
k < K, if its graph G is connected and exhibits the following property: There are X — 1 vertices
1 <) <f3... <ix- < B such that there are no direct links between the vertices of (1,..,1, — 1)
and those of (1y + 1,..8) for all 1 < £ < K — 1. The graph G, is the defined as the restriction of
G to the vertices (14_y +1,..,7s), where o = 0 and ¢ = B. Figure 2 illustrates a parallel AFJQN
and a sertes AFJQN.

3 Evolution equations and steady state
Forn > 0and 1 <i < B, let ¢) ¢ R* be the service requirement of the n-th customer to

be served in queue 1 (there is hence a zero-th customer !) and 7, be the n-th interarrival of the
exogeneous stream : r, = an,; — G, n > 0. Similarly, let d}, ¢ R* be the delay between the

-116-

n-th exogeneous arrival date and the beginning of the n-th service in queue 1 and R. be the n-th
network response time defined as the delay between the n-th exogeneous arrival and the n-th date
of the global departure process.

Lemma 1
Assume the network 1s empty at time 0. Then, for n > 0,

dpvy = maz(max(d,,, +0.,,),d} +0) - 1a), (3.1)

sep(2)

where the mazimum over an empty set is zero by convention and

d} = ‘r(r:z(;;:)(d(’, +a3). (3.2)

The n-th network response time, R,, is given by

Ra= max (d, +o0}). (3.3)
sep(B+1)
Proof

The boundary condition (3.2) follows from the assumption on the initial condition and from rules
(v) and (s¢) that define AFJQN’s. For j such that 1 < j < By, the inputs in queue j coincide with
the exogeneous arrivals and d, is thus the n-th waiting time in a FIFO queues with interarrival
sequence {rn}g° and service requirements {0)}$°. We have hence the classical Lindley-Loynes
equations

d),, =maz(0,d, +0l -1,), n20, 1<;j< By, (3.4)

which is exactly equation (3.1) since p(3) = 0.

Let j be such that p(;) # @, and assume that {d%, }&° is known for all ¢ ¢ p(j} so that the n-th
service completion in queue s € p(j) takes place at &%, + o',. According to rule (ii), the n + 1-st
arrival to queue j takes place at _

Gn+1 + max(dh,q +0h,y) ‘ (3.5)
sep(y)
Since the server of queue j becomes available for serving the n + 1-st customer at time

8 +d), + 03, (3.6)

it follows that d’,, | is equal to the expression in the r.h.s of equation (3.1). Equations (3.1) and
(3.2) are the basic evolution equations of the network, from which the transient bounds of section
4 and 5 will be derived.

The remainder of this section is devoted to the construction of the stationary regime of such
networks. This construction will be essential in the continuation of the transient bounds to steady
state bounds. Consider the following set of assumptions.

Ho The sequence {r,,0%,1 < j < Bo)}3. on (R*)2*! forms a stationary and ergodic
sequence of integrable RV’s on the probability space (U, F, P).

-117-

Theorem 2

Let j be fized 1 < j < B. Assume Hy holds and that for alls € p(j), dJ, converges weakly to a finite
and integrable RV d2 when n goes to co. Assume in addition that

Elo] < Elra] ¥ie ®(y). (2.7)

Then the distribution functions of the RV's d) converge weakly to a finste RV dJ_ when n goes to
00. More precisely, under these conditions, there exists a sequence of RV'8 8], n 20 on (QQ, F, P)
such that §2 and d), are equivalent in law for all n > 0 (d), =,. &)) and 8] increases pathunse to
a finste limit §1, when n goes to co.

The proof is presented in Appendix 1.
4 Bounds based on convex ordering
We are now in position to prove the stochastic ordering result. Consider a network 8 in C

and assume that all the RV’s {an}$ and {¢2}8°, 1 < j < B are delined on the probability space
(Q, F, P) and are all integrable.

Let now {@,}3° and {¢2}3°, 1 < 5 < B, be a set of "smoother” arrival and service processes
on ({1, F, P) in the sense that there exists a sub o-algebra say G of F such that for all n > 0,

Ta = Gn+1 — Gn = E[ra|CG] a.s. (4.1)
and for all y in B,
gl = El0l|G] a.s. (4.2).

These new variables are smoother than the original ones in the following sense : let b and b be
two non-negative and integrable RV's on (11, F, P) such that

b= E[b|C] a.s. (4.3)
Owing to Jensen’s theorem for conditional expectations, (4.3) entails
f(8) = /(EBIG]) < E[/(bIG)], a.e. (4.9)

for all convex nondecreasing function f: R* — R* such that the exp~ctations exist. This in turn
entails that for all such f

E[f(b) < E[f(b)] (4.5)

which can be rephrased in terms of the convex increasing stochastic ordering of Stoyan [St 84] as
follows :

b<e b (4.6)

Observe that b and b have hence the same first moment and higher moments are always larger for
b than for 6.

-118-

Let d?, be the delay variable obtained with the new arrival and service pattern {7} {32}
7 = 1, B. The main result of this section is the following theorem :

Theorem 3
- Foralln>0and1 <j< B,

d? isintegrable and d’ < E(d%|G] a.s. i

Proof

Baais step

Consider the case n = 0 we shall show that (4.7) holds for all j = 1, B by induction on ;
Basis step
Consider all j such that p(j) = 0, equation (3.2) shows that

d) = .é =0, (48}
so that (4.7) holds.
Inductive step

Assume that the hypothesis is true for all 1,1 < ¢ < j where Bo < ; < B. It
is plain from (3.2) that d} is then integrable. Applying Jensen's inequality for
conditional expectations to (3.2) yields

El&3IG] 2 max(E|4/G] +33), (49)
sep(s

so that if the predecessors of j satisfy property (4.7), so does queue j since (4.9)
implies then :

E|d}|G) 2 max (d; + 55). (410)
sep(y

This completes the proof of the basis step.

Inductive step Assume now that the property (4.7) was established for all queues up to rank n
We now show that the property holds also for n + 1. This is done by inductionon 1 <y £ B

Basis step

Consider all j such that p(5) = 8. (3.1)
d’,, = maz(d) + o) - 1,,0), (411

so that d’ | is also integrable. Jensen’s inequality together with (4.1) and (4 2
imply that

Eld’, |G| 2 maz(E[d}|G] + &, - 7a,0) (412)

n

Hence, since (4.7) is satiafied for rank n, we get {rom (4.12) that

E(d, |G| > maz(d’, + ! - 7,0) = d’,, a.8., 1 £J < Bo, (413

-119-

so that the property is also true for rank n + 1.
Inductive step
Assume (4.7) holds for all i,1 < i < j, where By < 7 < B we now show that the

property holds for j. It follows from (3.1) that d?, ,is also integrable. Applying
Jensen’s inequality to (3.1) and using (4.1) and (4.2), we get

Eld, ;1G] 2 maz(m!(n_()(E[dfmIG] +3n41), EldAIG) + 83 ~ 7). (4.14)
vep(y
Using now the ordering property for rank 'n, we get
Eld; ,,IG] 2 maz(mz(n;)(E[df,_,_,lG] + ‘;0;+1»Jz; +5] - 7a) a.s. (4.15)
sep(s

Since the property is satisfied for the predecessors of j, we get that it is then
satisfied by queue j too since (4.15) entails that

Eld} |G| > ma:|:(‘_r(x:,tx)(cff‘_H + 6:"“),:1.;", + c'r;’; — Ta) = d-f;“a.s. (4.16)

This complete the induction step on j.

This completes the induction step on n and proves the lemma.

Remark

Observe that theorem 3 also holds under the weaker assumptions.

and

Corollary 4

Foralln >0 andi =1, B.

Proof

Due to Jensen’s inequality

Ta 2 E[ra|G], n 20 (4.17)

Gl < Elol|G], n2>0, j=1,B. (4.18)
& >0 &, | (4.19)
E(f(d2)IG] > /(E[d3IG)), (4.20)

so that using equation (4.7) and the increasingness of f,

E(f(d2)IG] > /(d). (4.21)

-120-~

Equation (4.19) follows now directely from (4.21).

The next corollary shows that if the network achieves steady state in the sense of Theorem 2,
the transient bounds of corollary 4 extend to steady state.

Corollary §
Assume that both {rn,0l,j = 1,B}S and {?n,é.f‘,j = 1, B}§® satisfy the condition Hy and that dJ,
and d.f‘ converge weakly to finite RV's d2, and dl, respectively. Then

d <., dl. (4.22)

Proof
Assume f(61) is integrable. Since 6 < §2,, and d), =, 63, d.f, =, 0), it is then easy to prove

that f(d2) and f(d},) are both integrable for all n > 0 so that corollary 4 entails

E(f(82)] = Elf(d2)] < E(f(dL)] = E[f(62)]- (4.23)

Letting n go to infinity in the inequality

Elf(82)) < E/(82)] (429)
yields the desired result using the bounded convergence theorem.

Remark 1

Consider a two queue series network and denote as W2, n > 0, j = 1,2 the waiting time of the

n-th customer to enter queue ;. We have the following inductions for the RV's W, initialized by
the condition W§ =0 :

‘V':i'l = ma:(wr: + d}\ +a, —- an+h0)) n .>. 0 (425)

and
w:'bl = ma:(W: +0': + dﬂ - dﬂ+lp0)1 n 2 O| (426)

where the RV’s {dn}5° are the departure epochs from queue 1 :

dnst ~ da = 0L, + Maz(anys — 8n ~0h — W,,0). (4.27)

Observe that due to the decreasingness of the r.h.s of (4.27), considered as a function of W},
we cannot derive from this any simple comparison result between (dn41 — dn) and (J..H - J..)
when using Jensen'’s inequality as before.

We prove in Appendix 2 that there is actually no such general ordering result by considering
two simple stationary queueing systems where an increased variability of the sequence (r,,0,) has
the following respective effects :

-It increases the variability of the interdeparture distribution for the first one,
-It decreases it for the second one.

This strongly suggests that the stochastic ordering result of this section, which apply to the
total delays d?,, does not extend to the individual waiting times W] .

5 Bounds based on assoc'ation

~121-

5.1 Association of the delays

Before entering the core of this section, we introduce some terminology taat will be useful in
the forthcoming analysis and review the properties of stochastic ordering and associated RV's that
will be useful to us.

Definition 6 ([BP 75|)
Real valued RV’s ay,...,a,, are said to be associated if
covlh(ay,...,an) , g(ai,...,an)} 20 (5.1.1)

for all pairs of tncreasing functions h, g : R™ — R. Association of RV’s entails the follounng
properties :

1. Any subsct of assoctated RV’s are associated,
2. Increasing functions of associated RV’s are assoctated,
8. Independent RV’s are associated,

{. If two sets of associated RV’s are independent of one another, then their union forms a set of
associated RV’s ,

5. If ay,...,a, are associated RV'’s, then
Pl max a, <t| > H Pla; < t]. (5.1.2)

1<s<n
=1

We are now in position to derive the main results. Network 8, {r.}$° and {02}, = 1,B
are defined as in section 2. The following assumptions will be made throughout the section

H, {ra}3 is independent of {{02}8°}, 1 < j < B,
{ra}3° 12 a set of independent RV's and
{{o2, 1 < j < B}}, is a set of independent RV’s.
Lemma 7 -
Assume H, holds. For allm >0, {d,1 < j< B, 0< n <m} s a set of associated RV’s .
Proof '

We shall actually prove the more general result that {d, 1< < B,0<n<m-1}J{-ra,n <
0}U{e2, n >0, 1 < j < B} is a set of associated RV’s for 1 < k < B, m > 0. This is done by
induction on m.

Basis step

Consider the case m = 1. We shall show that {d},1 < 5 < k}U{-ra, n 20}U{02, n 20, 1 <
J < B} is a set of associated RV's for all 1 < k < B by induction on k.

Basis step
Consider all j such that p(5) = 0. d can be expressed as

d} =0. (5.1.3)

Consequently, {dg}, 1 < j € By is a set of independent RV’s which along with
{~ra,n > 0} U{e2, n > 0,1 < j < B} form a set of associated RV's according to
property 4.

Inductive step

-122-

Assume that the hypothesis is true for all 1,] < ¢ < k where By < k < B. We now
show that it is also true for k. Note that p(k) # 0. By definition,

dg = max (dy + 03) (5.1.4)
sep(k)

which is an increasing function of associated RV’s (note that ¢ < k if 1 ¢ p(k)).
Therefore it follows that {d), 1 < j < k}|J{-ra, n 20}U{e2, n >0, 1<, < B}
is a set of associated RV’s .
This completes the proof of the basis step.
Inductive step
Assume that the hypothesis is true up to m. We now show that the hypothesis holds also for m+ 1.
This is done by showing that the RV's {d2,, 1 < j <k, 0<n < m}U{-ra, n20}U{o2, n 2>
0, 1 < j < B) are associated for all 1 < k < B by induction on k.
Basis step)
We first show that {d2, 0< n<m, 1 <j < B}Y{~ra, n 20}U{c2, n20, 1<
J < B} U{dl .1, 1 £ 5 < Bo} is a set of associated RV’s . By hypothesis we already
know that {d2,, 1< n<m, 1<j< B} J{~ra, n20}U{02,n20,1<5j< B}is
a set of associated RV's . Now, for 1 < 5 < By.
&

mwe1 = maz(dl +o) - r1m, 0) (5.1.5)

is an increasing function of associated RV’s which proves the result.
Inductive step

Assume {d’, 1 < n<m, 1 <j< B}U{-ra, n 20} {02, n >0, 1
BYU{d?,,,, 1 < j < k} is aset of associated RV'sfor Bg < § < k where By <
We now show that the hypothesis holds for k. The expression for ¥ _, is

d:\+l = ma:(“}:?f)(d:n-n +";+1).d:. + U,’:‘ — Tm) (5.1.6)

which is an increasing function of associated RV'’s , hence the result.

This complete the induction siep on k and the hypothesis is true for k = B.
This completes the induction step on m and proves the lemma.
Remark
Lemma 7 bolds under the weake'- assumptions

H'y {ra}& is independent of {{02}°}, 1 <5< B,
{7a}§® 18 a set of associated RV's and
{{02, 1< j < B}}, is a sct of associated RV's.

5.2 Bounds based on stochastic ordering

This section will mainly deal with distribution functions rather than with RV's .
Definition 8

Let F and G be two distridutions functions on R. F is said to stochastically dominate G, F 2, G,

Uil

-123-

“(z) < G(z), Ve R (5.2.1)

If a and b are two real valued RV's , we shall say that a >, b whenever

Pla<zl] < Plb<z|, Yz ¢ R. (5.2.2)

A consequence of the above definition and property 5 of associated RV’s is
Lemma 9

Let(ay,...,a,) be a set of associated real valued RV's with respective distribution function Fy, ..., F,.
Let F be the distribution function of maz(a,,...,an). Then

F<u] (5.2.3)
=1

Last, we state the following obvious lemma.
Lemma 10

Let (Fy,...,F,) and (G1,...,Gn) be two families of distribution functions on R. If F; 2, G, =
1,n, then

Fi.F..Fo=[[F 2. [[Gi=G1G:.Gan (5.2.4)
s=1

=1

and

FisFye sF,2,CG1sGy3%..5G,, (5.2.5)

where . and « respectively denote the product and the convolution of distribution functions.

In the sequel, network f is given as in the preceding sections. We denote as £, (resp. T,])
the distribution functions on R of the RV o2 (resp. - r,). Notice that T2 has it support on R*
and T, on R™.

We define a sequence D7, n > 0, 1 < j < B of distribution function on R by the following
recursion

D=] (Dy=zf), i=1,B . (5.2.6)
sep(y)
and
DI, =(]J] Disr*Busi)(DieTeT) (5.2.7)

vep(s)

In these definitions, the product over an empty set is always understood as the step distribution
function U defined by

U(t)=0,t<0, U{t)=1,¢20 (5.2.8).

~124~

It can be checked by induction that the RV’s DZ‘ have their support on R*
Theorem 11

Assume H, is satisfied. Let D), be the distribution function of the RV'sd}, n >0, 1 < ;< B. We
have then

D)<, D), n>0, ;=128

—
31
[=]
w0

~

Proof

The proof is by induction on n. Here df{a) denotes the distribution function of the RVa.
Basis step n = 0. This step is shown by induction on j.
Basis step

Consider queue j where p(5) = 0. f)é = D) = U, so that the result holds true.
Inductive step

Assume the theorem is true for By < j < B. We now show that it is true for ; + 1.
Note that p(j5) # 0. We have

Dit'=] (Diezi)2a [(Dh+Zy) (5.2.10)
sep(y+1) wep(3+1)

(by induction hypothesis and lemma 10)

>, df(max dy +a3)
sep(y+1)

(by lemma 7 and lemma 9 plus assumption H; which entails that d and o are
independent RV's).

= Dé+ 1
(by definition).

This proves the basis step for n.
Inductive step

Assume that the theorem is true for n. We now show that it is true for n + 1 by induction on ;.
Basis step

We first it for 5 ¢ V such that p(j) =0 :
D), =U(DL e eT7) 2, U(D « T2« T7) (5.2.11)
(induction assumption)
= d[(maz(df, +0) - 1a, 0))
(by assumption H; which entails that d’, is independent of o, — r,,)

Y
=D, -

-125-

e

This completes the basis step.
Induction step
We now assume the theorem is true for By < 7 < B and prove it for j + 1. We have

Dy = (H (Dhyr * T) (D27 e 34 e 1)) (5.2.12)
sep(y+1)
20 (J] (Dhyr = Eogi)) (DAY e T3 < TT).
sep(s+1)

(inductive hypothesis and lemma 10).

2, df(maz(m d:wx + d.".+1).di;“ +ol* - 1))

ax (
sep(3+1)
(where we used that d%,_, is independent of o}, and d2*lof o2+ - r, due to H;,
then that (d%,,, +0},,) and (di*! + g2*! - r,) form a set of associated RV’s due to
lemma 7 and finally lemma 9)

— i+l
- Dn+l

(by definition).
This concludes the proof of the inductive step, and the proof of the theorem.

The next result concerns the extension of the transient bounds of theorem 12 to steady state.
H, will denote the following set of assumptions :

H; Assumption H,,
The sequence {r,}3° s i.i.d. with 1, integrable,

The sequence {02} is i.i.d. with ol integrable for all j =1, B.

Theorem 12

Let j be fized 1 < j < B. Assume H; holds and that for all ¢ € r(5), bg‘ converges weakly to a
finite and integrable distribution function DI, when n goes to co. Assume in addition that

Elol] < E[r]. (5.2.13)

Then the distribution funclions b," converge weakly to a finite distribution function bg, when n
goes to co. Denote as D7, the distribution function of d). Under the foregoing assumptions, the
distribution functions D2 converge weakly to a finite distribution function D], when n goes to oo

and DJ_ stochastically dominates D, namely
DI <, DI, (5.2.13)

The proof is found in Appendix 3.
6 Applications of bounds based on convex ordering

The following set of assumptions will be assumed to hold throughout the section:

-126-

Hsy. The 3 + 1 sequences {r,}3°, {02}5°, 7 = 1,.., B are mutually independent
6.1 Determinism minimizes response times

The property that under certain independence assumptions, deterministic interarrival times |
resp. service times) minimize response times in G/G/1 queues, as shown in [St 84] and Wh 84,
can be extended to AFJQN'’s using Theorem 3.

Let {d2}& (resp. {d2}&), j = 1,.., B be the response \imes obtained for the constituting
sequences {7,}5° and (62}, s = 1,.,B (resp. {7a}s® and {32}, 5 = 1,.., B) respectively
defined by the equations:

fa= Elra], n20 . (6.1 1
gl =0, 5=1,.,B, n2>0 (6.1.2)
and
faz=ta ,n>0 (6.1.2)
g =0l, 7=1,.,B, j# jo. n>0 6.1.4)
% = E[o®], n2>0 (6.1.5)

where jo 1s any fixed integer 1 < jp < B.
Corollary 13
For alln >0 and j = 1,.., B, the follounng snequalities hold

dl <,dl ,n20 (6.1.6)

and

Proof

Let G (resp. G) be the sub o-fields of F generated by the RV's {02}, j = 1,.,B (resp. {7}
and {02}8°,7=1,.,B,5 # jo). We first get from the independence assumption that

o= E[ra|G], n20 (6.1.8)
fn = E|talG], n2>0 (6.1.9)
and
G0 = EloalG], n20 j=1,.,8, (6.1.10)
dn = El0.|G], n20 j=1,.,B, (6.1.11)
so that Theorem 3 entails
d <E[d)|G), n20 5=1,.B (6.1.12)

and

-127-

d < E[d|C], n>20 j=1,.,B (6.113)

Equations (6.1.6) and {6.1.7) are mere rephrasing of (6.1.12) and (6.1.13) respectively.

The lower bounds (6.1.12) and (6.1.13) on d’, extend to steady state when the constituting
sequences {ra}$ and {02}, j = 1,.., B satisfy the assumptions of Theorem 2. Indeed, these
conditions entail that both the constituting sequences {7»}$°, {32}8°, s = 1,., B and {7.}5° and
{62}°, j = 1,.., B satisfy the assumptions of Theorem 2. Hence Corollary 5 applies to show that
the bounds of Corollary 13 extend to steady state, namely

d’, j=1,.,B, ‘ (6.1.14)

S A4 dz:o»
dl <.,d, j5j=1,.8B. (6.1.13)

6.2 Networks in random environment

The problem of determining the statistics of isolated queues with time varying interarrival
times was considered in the markovian case in [Ma 85]. For the general G/G/1 FIFO queue,
bounds are also available when the variations depend upon an independent stationary and ergodic
"environment” process. It was shown in (BM 86| that the waiting time statistics in such a queueing
system are bounded from below by those of the same queue with the environment process kept to
its mean value (see also [Ro 83]). Theorem 3 allows to extend this result to any AFJQN £. Asin
[BM 86], the environment process is assumed to be a non-negative real-valued stochastic process
V(t),t ¢ R on (0, F, P) being ergodic and stationary. Two stationary and ergodic sequences of
nonnegative RV's are assumed to be given: {r,}$° and {02}, j = 1,.., B. All these RV’s are
assumed to be integrable with E[V(t)] = 1 holding in particular. The modulation of the arrival
process is obtained by accelerating time proportionally to V, so that the effective interarrival times
in the random environment network are given by the sequence {f,}3° defined by

;= /-..*. V(s)ds, n>0. (6.2.1)

Let {d7}& (resp. {d2}3) be the response times obtained for the constituting sequences
{7a}5® (resp. {ra}5*) and {0)}5°, j=1,., B.
Corollary 14

If the stochastic process V(t),t € R is independent of {ra}§° and {02}8°, 5= 1,.., B, then the
follouning inequality holds for alln 2 0and3=1,.,8

d >, d. (6.2.2)

Proof

Let G be the sub o-fields of F generated by the RV’s {¢7}5°, = 1,.., B and {r,}5°. It was shown
in [BM 86| that under the enforced assumptions, for all n > 0

E‘[,’-"[C';] =r,. (6.2.3)

Equation (6.2.2) is now obtained as a direct consequence of Theorem 3.

-128~

Consider a fixed queue j. Observe that under the foregoing assumptions, if {7,}3 and
{o2}8°,5 = 1,.., B satisfy the conditions of Theorem 2 for j, then, {r,}& and {02}3°,; = 1,... D
also satisfy the conditions of Theorem 2 for j, so that the bounds of Corollary 14 then extend to
steady state, namely

6.3 Bounds on parallel networks

Theorem 3 also provides lower and upper bounds for the following problem, a particular case
of which was considered in [BM 85|. Let 8 be any AFJQN made of K AFJQ subnetworks ay,...ax
in parallel with respective underlying graphs G, = (V,E;), 1| <! < K. Denote as R, the n-th.
network response time:

R,= max (d +a?) (6.2.1)
sep(B+1)

for the constituting sequences {r,}$° and {01}$°, 7 = 1,.., B. Let R! denote the n-th response
time in the subnetwork a; , 1 <1 < K for the constituting sequences {r,}$* and {02}, j ¢ V,.

Rl = max (d +0?), 6.3.2
n=, max (& +0l) (63.)

where p;(B + 1) denotes the queues of p(B + 1) which belong to V;. Owing to the parallel structure
of 8, we have

R, = max R'. (6.3.3)

Let finally Rl denote the n-th response time in a; for the constituting sequence {7,}$° and
{64}8°,5 = 1,.., B, defined by equations (6.1.1) and (6.1.2).

Corollary 15
Foralln>0 _

Rn > max R, (6.3.4)
Proof

It was established in the proof of Corollary 13 that

d <E[d|G], n>0 j=1,.,B . (635
This and Jensen’s Theorem can be used in (6.3.3) to yield

RL<ER\G), n>0 I=1,.K. (636)

Using now this last inequality and Jensen's Theorem in (6.3.4), we get
E|R,|G] > max E[R.|G), n20. (637
1<I<K
Combining equations (6.3.6) and (6.3.7), we finally obtain

-129-

E[R.|G] > max R., n2>0, (6.3.8)
I<i< K

which implies (6.3.4).
Remark

Notice that due to our mutual independence assumption on the sequences {e2}8°, ;= 1,.,B,
the sequences {R!, &, I = 1,.., K are mutually independent as well. In other words, Corollary
14 allows us to derive lower bounds for the network response times that reduce to computing the
maximum of K independent RV’s being the response times of subnetworks of smaller size than the
initial one.

Upper bounds can also be obtained using convex ordering in the following particular case: as-
sume the arrival process is divisible in the sense that there exist K mutually independent sequences
of RV’s {#!}5° which satisfy the mean condition:

K

— El:l fv{u
K b}

Let d7, (resp. R!) denote the delay between the n-th arrival and the beginning of the n-th service

in queue j (resp. the n-th response time) in V; for the constituting sequence {#,,}§° and {03}5°,5 =

1, ..,B,]' € Qp.

Tn

n > 0. (6.3.9)

Corollary 16

Foralln >0
R, <., max R'. (6.3.10)
1<I<K

Proof

Let G be the sub o-algebra of F generated by the RV’s {r,}3* and {¢2}5°, s = 1,..,B. For all
n > 0, We get from the exchangeability of the RV’s {#,}3° and the independence assumptions that
for all n > 0,

E[t)] = 1n. (6.3.11)
Using Jensen’s inequality in
R, = max R, (6.3.12)
1<I<K
we get
E{ max T!'C!> max max (E[(d}|C] +02). (6.3.13)
1<iISK 1<ISK 1%
This together with Theorem 3 entail
E[max T!|G] > max max(d} +03) = Ta, (6.3.14)
1<i<K 1<i<K e

which completes the proof of (6.3.10).

Notice that for this upper bound too, the RV's 7! are mutually independent and can be
obtained by considering subnetworks of smaller dimensions than the initial one. Observe that if
{ra}8° and {02}, = 1,.,B (resp. {#a}& and {02}, J = 1,) satisfy the conditions of

-130-

Theorem 2 for all ; = 1, .., B, the bounds of Corollary 15 (resp. 16) then extend to steacy state
namely,

-

1 .
> 151
R 2 lrsn‘anK R,. (6.3.15)
and
1
Roo Sev max RL,. (6 2.16)

6.4 Bounds on series networks

Let 8 be any AFJQN made of K AFJQ subnetworks a,,..,ax in series with respective underlying
graphs G; = (V1, E}), 1 <1 £ K. Owing to the series structure of the network, the subnetworks
B;, 1 <1 < K of B obtained by considering only the queues of V| J..|JV; are also in the AFJQN
class. Let R! denote the n-th response time in 8 for the constituting sequences {r,}5° and
{02}2,7=1,.,B,5 e VilJ..UVi. Let also t!, denote the n-th interdeparture time of the output
stream of f;':

th=R,,, -R,, n2>0. (6.4.1)

Owing to the series structure of §, R, can de decomposed into the sum:

X
R,=) 4, n>o0 (6.4.2)
i=1

where p!, denotes the n-th response time in the AFJQN ay, for the interarrival times sequence
{ti71}5° and the service times sequence {02}, j in V; and where 3 stands for 7, n > 0.

Similarly, le; ., denote the n-th response time in the AFJQN a, for the constituting sequences
{81} and {52}, j in V;, where

t=E[], n20 (6.4.3)

=0, jeVi, n20 (6.4.4)

borollary 17
For all n > 0, the following inequality Aolds

K
E[R.] 2 Y El5). | (6.4.5)
=1

Proof

Let G, be the sub o-algebra of F generated by the RV’s {r,}$® and {02}5°, ;s = 1,..B ,]in
ViU...UVk. Owing to the independence assumptions, we have ,foralln >0, 1 <! < K

E[thIG] = E[t)] (6.4.6)
and, for all j ¢ V;
Elo\ |G| =2\, e Vi (6.47)
-131-

Hence, Theorem 3 applied to the network ay, entails that, foralln>0, 1 <I<K

Elo4IGi) > k.. (6.4 8)

This together with equation (6.4.2) readily entail (6.4.3).

Observe that (6.4.5) obviously holds at steady state provided the first moments involved in
this equation converge.

7 Applications of bounds based on association

The condition H; will be assumed to hold throughout the section so that-the assumptions of
Lemma 7 and Theorem 12 are satisfied.

7.1 Bounds on paralle] networks
The notations are those of section 6.3: R, (resp. R)) denotes the n-th response time in 3

(resp. a;, 1 < 1 < K) for the constituting sequences {r,}¢& and {¢2}5° 7 = 1,... 3. Under the
foregoing assumptions, we have the following strengthening of corollary 16

Corollary 18
Foralln>0
df(Ra) <ue [9f(RM). (7.1.1)
1<ISK
Proof

It was established in Lemma 7 that the RV’s {d2}5°, j = 1,.., B. are associated. Hence, the RV’s
R', n >0, 1 <! < K, which are given by (6.3.2) in terms of increasing functions of associated
RV'’s, are also associated, owing to property 2 of associated RV's. Equation (7.1.1) is hence a direct
consequence of property 5 (equation (5.1.2)) of association.

Assume the stability condition of Theorem 2 is satisfied. (Observe that condition H, is
stronger than condition Ho.) Then, the random vectors {d’}, j = 1,.., B converge weakly to a
finite random vector {d2_}, s = 1,.., B when n goes to co. This in turn implies that the random
vectors {RL}, I = 1,.., K (resp. the RV's R,) converge weakly to a finite random vector (resp
RV){R!}, 1 =1,. K (resp. R) when n goes to co.

Applying now proposition (1.2.3) of [St 84] to the weakly converging sequences df (R,,) and [], ., df(R},)
it 13 plain that equation (7.1.1) extends to steady state, namely T

df(Re) <ue [] df(R)- (7.1.2)

1<ISK

The upper bounds of equation (7.1.2) and the lower bounds of equation (6.3.4) are examplified in
Figure 3.

7.2 More general bounds. Relation to resequencing
We consider now the case of more general AFJQN's. For these networks, we show that The-

orems 11 and 12 can be used to provide computable upper bounds whic§ relate to resequencing
models analyzed earlier in [BGP 84]. The discussion of these bounds will be limited to steady

-132-~

state. [t is assumed that each queue satisfies the assumptions of Theorem 12, so that the distn-
bution functions D% (resp. D.), s =1,.,8 converge weakly to a proper distribution function
D’ (resp.D2,) when n goes to oo and D2, <, D’ for all 1 < j < B. Denoting as T’ { resp

~) the common distribution function of t.he RV’s {c_y 27 =1,.,B. (resp. —{ra}), it follows
from equation (5.2.7) that the distribution functions D1, 7 = 1, .., B satisfy the set of equations
(7.2.1)-(7.2.3) below :

DI = U(DL <52 e T), (7.20)
for j such that p(;) = @ and
DI, =AY (DL, «T7+T"), (7.2.2)
for 5 such that p(j) # @, where
Al = n Di e« T (7.2.3)
sep(y)

This set of functional equations can be solved recursively as follows:

First compute the solution D’ of equation (7.2.1) for all 1 < 5 < Bg. This equation is
the functional squation satisfied by the distribution function of the s stationary waiting times in a
GI/GI/1 queue with service times distributed according to L’ and (negative) interarrival times
according to T~

Next, compute by induction DB°“, ,D‘B as follows. Assume that the distribution functions
Dl,,...Di; are known for some j > Bg. Notice first that this and equation (7.2.3) fully determine
the distribution function A’ on R*. Hence, the only unknown in equation (7.2.2) is D2,. This
equation is the functional equation satisfied by the distribution function of the stat.ionary end-to-
end delays in a GI/G1/Gl/1 resequencing queue as considered in [BGP 84) with desordering times
distributed accordmg to A’, sevice times distributed according to L’ and (negative) interarrival
times according to T~

The end of this section is devoted to computational problems related to the solution of the<e
functional equations. General techniques for solving (7.2.1) are well known (see for instance [Co
85| for a detailled discussion)

We consider now equation (7.2.2), the general form of which is
D=A(DsEsT), (1.2.4)

where A, T and T~ are known distribution functions on R with their support on R*, R* and
R~ respectively, C = £ ¢« T~ has a negative mean and D is the unkuown distribution function on
R,. Closed form solutions have been derived for the solution of (7.2.4) in [BGP 84| for certain
classes of distribution functions A and T~ namely A hyperexponential and T~ exponential. For
more general classes of distribution functions, it is established in Appendix 3 that the following
numerical schema converges towards the solution of (7.2.1):

F:“(t) = A’(t)./—‘ F)(t-u)dC’(u), n >0, te R, (7.2.9)

where C? = L7 « T_ and

Fé = A, (7.26)

Here, the functions F,(t), t ¢ R are distribution functions on R with support on R* and the
convergence of F,, towards the solution of (7.2.1) has to be understood in the sense of the weak
convergence.

In conclusion, Theorems 11 and 12 provide a general method to compute upper bounds on
the stationary delays through AFJQN's with i.i.d. constituting sequences. The computation of
these bounds reduces to determining By stationary waiting time distribution functions of GI/GI/1
queues and B — By stationary state end-to-end delays in GI/GI/G1/1 resequencing queues.

Appendix 1

The basic idea for proving theorem 2 consists in generalizing the schema of Loynes for the
response time of a G/G/1 queue ({Lo 62]), to the response times d?, of our network. Let us first
consider the sequence {r,}8° and {02} for all j ¢ 1, B as the right half of certain bi-infinite
sequences {r,}7% and {¢2}*32 on (1, F,P). We shall assume that ({2, F, P) is the canonical

—oo
space. Hence P will be assumed to be 6 -invariant (stationary) and é-ergodic. Let us denote by

7 the difference a; - ao, and by o7 the variable o). Consider now the schema {§2}$° defined by
53 =d},and forn >0:

&), 08 = maz(ma(x)((&,‘,“ +0')0d), 62 +07 - 1). (A.1.1)
‘¢ ply

Lemma 1

For any j € B, the sequence {§]}a>0 18 increasing.

Proof

Let us first prove this for 1 < j < By. It is clear that §7 > 0 = §]. Assume now that §2 > §)_, for
some n > 1. From (A.1.1), we get :

61

n+l

08 = maz(0, 62 + 0’ ~ 1) > maz(0, §_, +0’ ~1) =606, 1< j < B,. (412

By induction, the §], s are thus increasing.

Now consider j such that p(j) # 0. By the induction hypothesis, we can assume that the RV's
6} are increasing in n for 1 € p(;). We prove first that §] > 6. We have

6] 08 = maz(max(8} +0') 08,86 + 07 —r) > max((6} + %) 0 8) > max((§ +0')08), (A13)
wp(y) sep(s) sep(s)

where we have used our assumption §} > §5. Notice that the last expression is §] o 8 so that the
property is proved. Assuming now that §2 > &) by (A.1.1) we get

n~1?
6l 100> maz(m?x)((&',“ +0')08),6_, +0° -1)). (A14)
sep(s

Since the §) are increasing for 1 ¢ p(j) we get from the last expression that

-134-

6,,00 > maz(max((6.,, +0')08), 6., +o’ 7)) =608 (A5
sep()

and so &7 increases in n.
Lemma 2

Let &1, be the limiting value of the increasing sequence 5] when n goes to infinsty. Under the
assumptions of theorem 2, 61 < oo. If there exists an 1 ¢ x(j) such that Elo}] > Eira; then
8], = o0 a.s.

Proof The limiting variables §2, satisfy the pathwise equation :

6"”00=maz(m?x)((éf,c-ka’)oe), 6, +a0? =) (A.1.6)
wp(s

For 1 £ 5 £ Bo, (A.1.6) reduces to

81,060 = maz(0,6), + 0’ —1). (A.1T)

Equation (A.1.7) shows that the event {62, = oo} is 6-invariant. Therefore, this event is either
of probability O or 1. Assume that it is of probability 1. By the increasingness property we have

Elmaz(0, 63+’ — 1) - 6] = E[s},, 00 - 82| = Elg2,, - 82/ 20, (A13)

;From this we get

lim E{maz(0, 6] +0’ - r)- 42} >0. (A.1.9)

1 —» 00

Using now Lebesgue’s theorem, this inequality is preserved with limit taken inside the expectation.
If we assume that §2 T oo, then we get

Elo?] 2 Elr]. (A.1.10)

Now taking the contrapositive of this argument, we see that

Elo’| < E]r] (A.1.11)

is sufficient to bave 61, finite a.e. This completes the proof of the first part of the lemma for
1< ;< Bo.

Let j be such that By < j € Bo. Assume now that for all ¢ ¢ x(j), &5, is a.e. finite and
integrable. The proof that condition (A.1.11) entails 52, finite a.e. proceeds as follows. The event
{62, = oo} is shown to be 6-invariant from (A.1.6). The inequality

lim sup E|(maz(max (63, + ') 00), 8+ = r) = 61]) 2 0 (A.112)
n—oo sep(y

is then established using the increasingness of 62 and its integrability as in (A.1.8). One also gets
from elementary manipulations that '

-135-

- Xp = (moz(mav((6) , +0')08).8) +07 -r)- &) < (max({&,, ~o'job) o’ -1 (A.112)
vep(y) weply)

;From the increasingness of &), i ¢ p(j), we get hence

Xn £ (m?)()((5;°+a‘)00)+a’ -r. (A.1.14)
vep(s

Owing to the integrability assumptions, it follows from (A.1.14) that the The RV’s X, are uniformly
bounded from above by an integrable RV. The Fatou-Lebesgue lemma and (A.1.12) entail then

Ellimsup X,] 2 limsup E{X,.] > 0. (A.1.13)
Under the assumption 8}, < oo a.e. for all 5 € x(5), the hypothesis 6] T co implies that

limsup X, =0’ — 1, (A.1.16)

n

so that queue j satisfies condition (A.1.10). The rest of the proof follows exactly as before.
Proof of Theorem 2

We get by induction that d’, = §7 0 " (use the fact r, = 108", 0, =0 08", n > 0). Hence 4},
and §] have the same distribution due to the 6-invariance of P. The weak convergence of the law
of dJ, to a proper distribution is now a direct consequence of the increasing a.e. of §] to the finite
random variable §2,.

Appendix 2

1 - A stationary queucing system where an tncreased variability of interarrivals decreases the vart-
ability of interdeparture times.)

Consider a GI/M/1 queue. The steady state distribution for the number of customers just after a
departure is geometrically distributed with parameter ¢ which is the smallest positive real root of
the equation

o= A"(u(1-7)), (A2.1)

where A* denotes the Laplace transform of the interarrival times and u~! the mean service time.
The interdeparture distribution function has hence the following Laplace transform

D*(s) = (1 - a)z.,z,a*“i -+ (1- a)A'(s)“_‘: - (4.2.2)
= (1-0)A"(s) L= +0—L (A.2.3)

uts B+
The mean interdeparture time is hence

-136-

1 1
d= ;+(1 -a):\-, (A.2.4)

where denotes the mean interarrival time. Considcr the two cases where A® is exponential and
deterministic with the same mean A~!

Ai(s) = /_}_’ (A4.25)
Aj(s) = e:p(-%). (A.2.6)

The distribution function corresponding to Aj is larger for convex ordering than the one corre-
sponding to A;. However, 03 > 03 so that d; < d;.

2 - A stationary queueing system where an increased variability of interarrivals increases the vari-
ability of interdeparture times.

Consider a stable D/D/1 queue. Let A denote the intensity of the arrival process. The sta-
tionary interdeparture times have deterministic distribution with mean A~!. Here, an increased
variability of interarrivals increases the variability of interdeparture times.

Appendix 3

In this section, weak convergence of distribution functions on R will be denoted as =. We
establish first that under the assumptions of Theorem 12

DI = DI, (A.3.1)
and . .
DI = DI (A.3.2)

when n goes to 0o, where DI, and D, are proper distribution functions on R*. We establish the
convergence (A.3.2) first. The property is first proved for j such that p(j) = 8. For such a j, D?
represents the distribution function of the n-th waiting time in a G1/GI/1 FIFO queue and classical
results in queueing theory [Co 85] can be used to establish (A.3.1) provided EloZ]| < E|ra].

The coavergence (A.3.2) is now established by induction for all By < j < B. Assume queues

I,..,5 — 1 to be in steady state for some j such By < § < B. Then equations (5.2.6) and (5.2.7)
read respectively

D= A’ (A.3.3)
and
DI, ,=A(DLeT!eT), n20, (4.3.4)
where
Al = H Di, « %, (A.3.5)
sep(y)
-137-

Let {2}, {01}=,. and {r,}*_ be independent sequences of i.1.d. RV’s with respective dis-
tribution functions A’, £7 and T~. Consider the R*-valued Markov chain {y2}$ defined by the
recursion

vhsy = maz(al,,yh +0) - 71.), n 20, (A 3.6)

where

y3 = ay. (A.3.7)

Using the independence assumptions, it is plain from (A.3.3)-(A.3.5) that df(y}) = DI for all
n>0.

Denote o, o} and 15 as a?, o’ and r respectively. Using the same formalism as in Appendix 1,
define the Loynes’ schema {z,}$° by the recursion

z,’;“oo = maz(a’ob,zl + o’ - 1), n 20, (A.3.8)

where

zg =al. (A.3.9)

One proves as in Appendix 1 that z) increases pathwise with n, z =, y2 for all n > 0 and

z";+‘00—z;"ga’00+a"—r. (A.3.10)

The integrability assumptions are then used in (A.1.10) to prove that the RV's {z,}5° are bounded
from above by an integrable RV. The remainder of the proof is as in Appendix 1.

The numerical schema (7.2.5)-(7.2.6) is a mere rephrasing of equations (A.3.3)-(A.3.5), so that
its convergence towards the solution of (7.2.1) is a direct consequence of (A.3.2).

We prove now the convergence (A.3.1). It was established in Theorem 11 that under the
assumption H;

Dy <.Di, n20, j=1,B. (A43.11)
It follows from the discussion of Appendix 1 that
DI =df(63), n20, j=1,B. ' (4.3.12)

Hence, the convergence (A.3.2) of D2, towards a finite distribution function used in (A.3.11) entails
that the increasing sequence &) cannot converge to co almost surely, which establishes (A.3.1).

-138-

%1

(a) A program

FIGURE 1

(a)

(b)

(b) The associated
Fork join
Queueing netwark

-139-

FIGURE 2

(a)

(b)

fa) A parallel network (b) A series network

-140-

FIGURE 3
'y
E[Ru]
L 20 /
u u [
1 O_J 3
u u
L 20 2 4
real system
| 10
lower bound
0.1 0.5 0.9

Arrival process : Poisson of parameter A
Service times : exponentially distributed of parameter u

~1l41-

BIBLIOGRAPHY

‘Ba 85| F. Baccelli. “Two Parallel Queues Created by Arrivals with Two Demands: The M/G,2
Symmetrical case,” Report INRIA No. 426, July 1985.

BGP 84] F. Baccelli, E. Gelenbe and B. Plateau. “An End to End Approach to the Resequencing
Problem,” JACM, V1. 31 No. 3, july 1984, pp.474-485.

[BM 85| F. Baccelli, A. Makowski, “Simple Computable Bounds for the Fork-Join Queue,” Proc.
Conf. Inform. Sci. Systems, John Hopkins Univ. pp 436-441. March 1985.

(BM 85b] F. Baccelli, W.A. Massey, “Series-Parallel, Fork-Join Queueing Networks and Their
Stochastic Ordering,” AT&T Bell Laboratories Memorandum, May 1985.

‘BM 86] F. Baccelli, A. Makowski. “Stability and Bounds for Single Server Queues in Random
Environment,” Stochastic Models, Vol.2, n. 2, Marcel Dekker. 1986.

'BMS 87| F. Baccelli, A. Makowski and A. Shwartz, Fork-Join Queue and related systems
with synchronization constraints: Stochastic ordering, approximations and computable
bounds ,” Electrical Engineering Technical Report, University of Maryland, College
Park, jan. 87.

‘BMT 87| F. Baccelli, W. A. Massey and D. Towsley, “Acyclic Fork-Join Queueing Networks”,
Internal Report, Computer Sc. Dept., University of Massachusetts, April 1987.

‘BP 73] R. Barlow, F. Proschan, “Stastistical Theory of reliability and life testing,” Holt, Rine-
hart and Winston, 1975.

‘Br 75 P. Brinch Hansen, “ The Programming Language Concurrent Pascal,” JEEE Trans.
Soft. Engng., SE-1, pp. 199-207, June 1975.

‘FH 84] L. Flatto, S. Hahn, “Two Parallel Queues Created by Arrivals with Two Demands,!,”
SIAM J. Appl. Math. Vol. 44, pp. 1041-1053, 1984.

'Co 82| J.W. Cohen . * The Single Server Queue,” North Holland, 1982.

‘Ha 84j B. Hajek. “ The Proof of a Folk Theorem on Queueing Delay with Applications to
Routing in Networks,” JACM Vpl. 30, pp. 834-851, 1983.

"HHK 79] U. Herzog, W. Hoffmann, W. Kleinéder, “Performance Modeling and Evaluation for
Hierarchically Organized Multiprocessor Computer Systems,” proceedings of the inter-
national conference on parallel processing, 1979, pp. 103-114.

Ho 78| C.A.R. Hoare, Communicating Sequential Processes, Prentice-Hall International, Lon-
don, 1985. .

Ho 79] W. Hoffmann, “Queuing Models for Parallel Processing and their Application to a
Hierarchically Organized Multiprocessing System,” Proc. lst European Conf. Parallel
Distr. Proc., Toulouse France, pp. 221-227, Feb. 1979.

{KW 85| C.P. Kruskal, A. Weiss. “Allocating Independent Subtasks on Parallel Processors,’
Trans. Soft. Engng. SE-11, pp. 1001-1016, Oct. 1985.

[Ma 85] W.A. Massey, “Asymptotic Analysis of the Tini» Dependent M/M/1 Queue,” Mathe-
matics of Operations Research, Vol. 10, No. 2, May 1985, pp 305-327.

[Nels85] R. Nelson, A.N. Tantawi, “Approximate Analysis of Fork/Join Synchronization in Par-

allel Queues,” IBM Report RC11481, Oct. 1985.

-142-

INTT 87)
[Py 81]
[Ro 83|
(Si 87
[St 84]
(TY 87]
(Wh 81]

(Wh 84)

R. Nelson, D. Towsley, A.N. Tantawi, “Performance Analysis of Parallel Processing
Systems,” to be presented at SIGMETRICS'87, 1987.

1.C. Pyle, The Ada Programming Language, Prentice-Hall International, London, 1981.

T Rolski, “Comparison Theorems for Queues with dependent inter-arrival times ",
Modelling and Performance Evaluation Methodology, Lecture Notes in Control and
Information Sciences, 60, Springer Verlag, 1984.

K. Sigman, “Regeneration in Queues with Regenerative Input,” submitted to Queueing
Systemas.

D. Stoyan. Comparison Methods for Queucs and Other Stochastic Models, English
translation (D.J. Daley editor), J. Wiley and Sons, New York, 1984.

D. Towsley and S.P. Yu. “Bounds for Two Server Fork-Join Queuéing Systems,” sub-
mitted to Operations Research.

W. Whitt. “Comparing and Counting Processes and Queues,” Adv. Appl. Prob. Vol.
13, pp. 207-220, 1981.

W. Whitt. “Minimizing Delays in the GI/G/1 Queue,” Opns. Res. Vol. 32, pp. 41-51,
1984.

~143-

DISTRIBUTION LIST

adcres ses

Wil liamss, Alan N
RADC/COTC
Griffiss AFB NY 13441-5700

RARC/COVL
GRIFFISS AFB NY 13441-5700

RAODC/CAP
GRIFFISS AFB NY 134415700

ADMINISTRATOR

DEF TECH INF CTR

AT TN: OTIC-DDA

CAMERCN STA BG 5
ALEXANORIA VA ?22%04=4145

-
University of Massachusetts

Department of Electrical Engr & Computer Engr

Attn: Christos Cassandras
Amherst, Massachusetts 01003

SDIO/S=BF (Lt Col Sowa)
The Fentagon
Wwashingtcn DC ¢2G201-7100

SDI1I0/S-8¥ (Lt Col Rirat)
The Fentagon
Wwashingtcr 0C 2C201-7100

DL-1

number
of copies

IDA (SDIO Liktrary)
(Albert fFerrel la)
1801 N Beauregarc Street

Alexardria VA 22311

SAF/AGSD (Lt Ccl Ben Greenway)
The Fentagon
Washingtecn D0C 20330

AFSC/CV=0 (Lt Col Flynn)
Andrews AFB MD 2C334-500C

HQ SO/XR (Col Keimach)

PO Box 97940

Worlcuay Fostal Center
Los Argeles CA 90009=-296C

HQ SC/CNI (Col Hchmar)
PO Bex 92640

Worlcuay Postal Center
LA C3 90009=29£0

HQ SC/CNW

PO Becx 92640

Worlduway Fostal Center
Los 4prgeles CA 9N0C9=-2964N

ESD/AT (Col Paul)
Hansccn AF3 vA N1731-500"

AFSTC/XLXx (Lt Col Detucci)
Kirtland AFB, \M 87117

DL«2

USA SCC/CASD=H=SE (Larry Tuobs)
PO Becx 1500
Huntsvil le, AL 35807

ANSER Corp

Suite 331N

Crystal GCateway 2

1215 Jefterscn Davis highway
Arlingtonr VA 2:2C2

AFOTEC/XPP (Capt Wrotel)
Kirtland AFB N¥ 87117

AF Scace Comrang/ XPXIS
Peterson AFB CO 80914-5QC1

Director NSA (V42 Gecrge Hoover)
9800 Savage Road
Ft George G Meaage MD 2075S5-60010

SDI10/S=-8BF (Capt Kart)
The Pentagon
Wwashington 0C 2(G301-7130

S0IO0/S=8% (CCR Newton)
The Fentagon
Washingtnan 0C Z2(0201-7190

HQ SC/CN (COL WILKENSCN)
PC BCXx 92940

WORLCWAY FOSTAL CENTER
LA CA 900C9=-29¢0

DL3

HQ SC/CNIS

(LT COL FENNELL)

PO BCx 92950

WORLZWAY POSTAL CENTER
LA CA 900CS%=-29¢0

HQ SD/CWX

PO 80X 92940

WORLCWAY POSTAL CENTER
LA CA 900C9-29¢€0

HQ SC/CNE

PC BCx 92960

WCRLOWAY POSTAL CENTER
LA CA 900C9=2940

ESD/ATS (LT CCL CLDENEERG)
HANSCOM AF3 A 01731-500C

ESO/ATN (LT COL LEIB)
HANSCOM AFB A (01731-500C

MISSION
of

Rome Air Development Center

RADC plans and executes research, development, test and selected
acquisition programs in support of Command, Control, Communications
and Intelligence (cr) activities. Technical and engineering support within
areas of competence is provided to ESD Program Offices (POs) and other
ESD elements to perform effective acquisition of I systems. The areas
of technical competence include communications, command and control,
battle management, information processing, surveillance sensors,
intelligence data collection and handling, solid state sciences,
electromagnetics, and propagation, and electronic, maintainability, and

)
A
compatibility. %

CRF CSF SCAF S 30 & S B o F RN A XA ALK S

